숙주의 발아과정 동안 폴리아민 생합성과 Diamine 산화효소에 대한 스트론티움 효과

Effect of Strontium on Polyamine Synthesis and Diamine Oxidase during the Germination of Mung Bean (Vigna radiata L.)

  • Kim, Tae-Wan (Department of Plant Resources Science, Hankyong National University) ;
  • Kwon, Young-Up (Department of Cereal Crop, National Crop Experiment Station, RDA) ;
  • Yun, Seung-Gil (Department of Plant Resources Science, Hankyong National University)
  • 투고 : 2003.10.07
  • 심사 : 2003.12.06
  • 발행 : 2003.12.30

초록

본 연구는 고등식물 세포 내 대사작용에 대한 스트론티움의 역할을 구명하고자 수행되었다. Strontium에 의한 diamine 산화효소의 활성화로 putrescine의 함량은 감소하였다. 배축에서의 diamine 산화효소의 활성은 $0.5-1.8\;mol\;putrescine\;oxidation\;mg^{-1}\;protein\;min^{-1}$이었다. 자엽에서의 putrescine 감소는 적어도 diamine 산화효소에 의한 putrescine의 산화의 결과였다. 더 나아가 strontium 1-10 mM 처리에 의해 spermidine과 spermine 의 축적이 관찰되었다. strontium이 없는 대조구에 비해 spermldine은 2-3배 증가하였다. 이러한 증가는 생체중을 기준으로 하였을 경우뿐만 아니라 RNA를 기준으로 하였을 경우에도 동일한 결과였다. 결론적으로 이러한 결과는 strontium이 diamine 산화 및 polyamine 축적과 같은 polyamine의 대사와 관련되어있음을 보여주었다.

Objective of this experiment was to investigate the role of strontium in intracellular processes in mung bean (Vigna radiata L.). Diamine oxidase (DAO) induction by $Sr^{2+}$ appeared to a decrease in putrescine levels correspondently. DAO activities in the hypocotyls were in a range of 0.5 to $1.8unit{\cdot}mg^{-1}\;protein{\cdot}min^{-1}$. The decrease in Put levels in the cotyledons might be partly resulted from Put degradation by DAO. It was observed that the accumulation of spermidine and spermine by $Sr^{2+}$ was in the range of 1 mM to 10 mM. Spermidine levels were 2 to 3 fold higher than in the absence of strontium. The increase in polyamine levels was observed not only on a basis of g fresh weight but also a RNA basis. These results demonstrated that the inhibitory action of $Sr^{2+}$ may be closely related with polyamine metabolism as well as diamine oxidation and polyamine accumulation.

키워드

참고문헌

  1. Angellini, R., and R. Federico. 1989. Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J. Plant Physiol. 135:212-217
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brummel, D. A., and J. L. Hall. 1987. Rapid cellular responses to auxin and the regulation of growth. Plant Cell Environ. 10:523-543
  4. Cho, Y. D., S. H. Lee, Y. H. Kang, M. W. Kim, S. H. Kim, and E. S. Jin. 1986. Cell biological studies on growth and development. Effect of polyamines on D-glucose-6-phosphate cyclohydrolase activity in carrot cells. Korean J. Bot 29:263-274
  5. Cline, J. F. 1981. Aging effects of the availability of strontium and cesium to plants. Health Physics 41:293-296 https://doi.org/10.1097/00004032-198108000-00006
  6. Evans, P. T., and R. L. Malmberg. 1989. Do polyamines have roles in plant development ? Annu. Rev. Plant Physiol. Plant Mol Biol. 40:235-269
  7. Flores, H. E., and P. Filner. 1985. Polyamine catabolism m higher plants: charactenzation of pyrroline dehydrogenase. Plant Growth Regul. 3:277-291 https://doi.org/10.1007/BF00117586
  8. Fores, H. E., and A. W. Galston, 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69:701-706 https://doi.org/10.1104/pp.69.3.701
  9. Guilfoyle, T. J., and J. B. Hanson. 1973. Increased activity of chromatin-bound ribonucleic acid polymerase from soybean hypocotyl with spermidine and high ionic strength. Plant Physiol. 51:1022-1025 https://doi.org/10.1104/pp.51.6.1022
  10. Heinrich, G., H. J. Muller, K. Oswald, and A. Gries. 1989. Natural and artificial radionuclides in selected Styrian soils and plants before and after the reactor accident in Chemobyl. Biochem. Physiol Pflanzen 185:55-67
  11. Hoagland, D. R., and D. I. Amon. 1950. The water-culture method for growing plants without soil. Cal. Agric. Exp. Stat Circul. p. 347
  12. Holmstead, B., L. Larsson, and R. Tham. 1961. Further studies on spectrophotometric method for the determination of amine oxidase activity. Biochem. Biophys. Acta 48:182-186 https://doi.org/10.1016/0006-3002(61)90530-3
  13. Hutchin, M. E., and B. E. Vaughan. 1968. Relation between simultaneous Ca and Sr transport rates in isolated segments of vetch, barley and pine roots. Plant Physiol. 43:1913-1918 https://doi.org/10.1104/pp.43.12.1913
  14. Iserman, K. 1981. Uptake of stable strontium by plants and effects on plant growth, p. 65-86. In S. C. Skoryna (ed.) Handbook of stable strontium, Plenum Press, New York, London, UK
  15. Kim, T. W., and G. Heinrich. 1995a. Effects of $Sr^2^+$, $Ca^2^+$, and spermine on thylakoid protein- and chlorophyll a/b-degradation during the senescence of sugar beet leaf discs. Photosynthetica 31:315-319
  16. Kim, T. W., and G. Heinrich. 1995b. Strontium metabolism in higher plants; Effect of strontium on the polyamine biosynthesis during germination of wheat (Triticum aestivum L.). Korean J. Environ. Agr. 14:55-77
  17. Kim, T. W., and G. Heinrich. 1995c. Use of laser microprobe mass analyzer (LAMMA) for detection of strontium incorporation in oxalate-crystals of Beta vulgaris leaf. J. Plant Physiol. 146:217-221
  18. Liquori, A. M., L Constantino, V. Grescenzi, A. Elia, E. Giglio, R. Puliti, M. De Santis Savino, and V. Vitagliano. 1967. Complex between DNA and polyamines, a molecular model. J. Mol. Biol. 24:113-122 https://doi.org/10.1016/0022-2836(67)90094-0
  19. Malinski C, T. Bieganski, W. A. Fogel, and M. E. Kitler. 1985. Diamine oxidase in developing tissues, p. 154-166. h B. Mondovi (ed.) Structure and Functions of Amine Oxidases. CRC Press, Boca Raton, Florida, USA
  20. Poovaiah, B. W., A. S. N. Reddy, and J. J. McFadden. 1987. Calcium messenger system: Role of protein phosphorylation and inositol bisphospholipids. Physiol. Plant 69:569-573 https://doi.org/10.1111/j.1399-3054.1987.tb09241.x
  21. Popplewell, D. S., G. J. Ham, T. E. Johnson, J. W. Stather, and S. A. Sumner. 1984. The uptake of 238,239,240Pu, 241Am, 90Sr and 137Cs to potatoes. Sci. Tot. Environ. 38:173-181 https://doi.org/10.1016/0048-9697(84)90215-8
  22. Redmond, J. W., and A. Tseng. 1979. High pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine, J. Chrom. 170:479-481 https://doi.org/10.1016/S0021-9673(00)95481-5
  23. Romney, E. M., G. V. Alexander, W. A. Rhoads, and K. H. Larsen. 1959. Influence of Ca on plant uptake of 90Sr and stable Sr. Soil Sci. 87:160-165 https://doi.org/10.1097/00010694-195903000-00007
  24. Sasaki, I., M. N. Dufour, and A. Gaudemer. 1982. Interaction between nucleic acids and metal complexes. 1. Synthesis of polyamines and polyamines derived from uracil. J. Chim. 6:341-344
  25. Seyfried, C. E., and D. R. Morris. 1979. Relationship between inhibition of polyamine biosynthesis and DNA replication in inactivated lymphocytes. Cancer Res. 39:4861-4867
  26. Smith, T. A. 1985a. Polyamines. Annu. Rev. Plant Physiol. 36:117-143 https://doi.org/10.1146/annurev.pp.36.060185.001001
  27. Smith, T. A. 1985b. Di- and polyamine oxidases of higher plants. Biochem. Soc. Trans. 13:319-322
  28. Smith, T, A., and G. R. Best. 1977. Polyamines in barley seedlings. Phytochem. 16:841-843 https://doi.org/10.1016/S0031-9422(00)86676-5
  29. Smith T. A., G. R. Best, A. J. Abbott, and E. D. Clements. 1978. Polyamines in Paul's Scarlet rose suspension cultures. Planta 144:63-68 https://doi.org/10.1007/BF00385008
  30. Stroinski, A., and Z. Szczotka. 1989. Effect of cadmium and Phytophthora infestans on polyamine levels in potato leaves. Physiol. Plant 77:244-246 https://doi.org/10.1111/j.1399-3054.1989.tb04976.x
  31. Tabor, C. W., and H. Tabor. 1984. Polyamines. Annu. Rev. Biochem. 53:749-790 https://doi.org/10.1146/annurev.bi.53.070184.003533
  32. Tiburicio, A. F., M. A. Masdeu, F. M. Dumortier, and A. W. Galston. 1986. Polyamine metabolism and osmotic stress. I.lRelation to protoplast viability. Physiol. Plant. 82:369-374 https://doi.org/10.1104/pp.82.2.369
  33. Wackar, W. E. C, and B. L. Vallee. 1959. Nucleic acids and metals I, Cr, Mn, Ni, Fe and other metals in ribonucleic add from diverse biological sources. J. Biol. Chem. 234:3257-3262
  34. Wang, S. Y. 1987. Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress. Physiol. Plant 69:253-257 https://doi.org/10.1111/j.1399-3054.1987.tb04283.x
  35. Witschi, H. P., and W. N. Aldridge. 1968. Uptake, distribution and binding of beryllium to organelles of the rat liver. Biochem. J. 106:811-817
  36. Young, N. D., and A. W. Galston. 1983. Putrescine and acid stress. Induction of arginine decarboxylase activity and putrescine accumulation by low pH. Plant Physiol. 71:767-771 https://doi.org/10.1104/pp.71.4.767
  37. Young, N. D., and A. W. Galston. 1984. Physiological control of arginine decarboxylase activity in K-deficient oat shoots. Plant Physiol. 76:331-335 https://doi.org/10.1104/pp.76.2.331