염화칼리 시용에 따른 배추와 무의 생육과 수량

Growth and Yield Response of Chinese Cabbage and Radish on Application of Potassium Chloride Fertilizer

  • Song, Yo-Sung (National Institute of Agricultural Science and Technology) ;
  • Kwak, Han-Kang (National Institute of Agricultural Science and Technology) ;
  • Yeon, Byeong-Yeol (National Institute of Agricultural Science and Technology) ;
  • Yoon, Jung-Hui (National Institute of Agricultural Science and Technology) ;
  • Jun, Hee-Joong (National Institute of Agricultural Science and Technology)
  • 투고 : 2003.09.25
  • 심사 : 2003.12.08
  • 발행 : 2003.12.30

초록

배추와 무 직파재배시 토양중 치환성 칼륨의 생육 저해 한계 농도를 밝히기 위하여 $1m^2$ 무저 pot에서 주로 농가에서 사용하는 염화칼리비료를 처리하여 토양의 치환성 칼륨행동과 작물의 생육과 발아특성을 조사하여 다음과 같은 결과를 얻었다. 배추와 무의 최고 수량은 토양내 치환성 칼륨 함량이 각각 $0.96cmol_c\;kg^{-1}$, $1.28cmol_c\;kg^{-1}$에서 있었으며, 이때의 염화칼리 비료의 시용량은 봄 배추 $370(K_2O:\;222)\;kg\;ha^{-1}$, 가을 무 $517(K_2O:\;310)\;kg\;ha^{-1}$이었다. 이 이상에서는 토양의 치환성 칼륨함량이 높아짐에 따라 수량은 낮아지는 경향을 보였다. 토양의 치환성 칼륨 함량과 작물의 발아율과의 관계를 보면 배추는 치환성 칼륨 함량이 $0.54cmol_c\;kg^{-1}$이하에서는 정상적인 발아가 되었으나 $1.29cmol_c\;kg^{-1}$은 83%, $2.30cmol_c\;kg^{-1}$은 67%의 발아율을 보였고, 무의 경우에는 $1.29cmol_c\;kg^{-1}$ 이하에서는 정상적 생육, $2.30cmol_c\;kg^{-1}$에서는 83%의 발아율을 보였다. 발아장해를 받는 토양의 전기전도도 값은 배추는 $1.29dS\;m^{-1}$, 무는 $2.30dS\;m^{-1}$이었다. 따라서 작물 재배전에 다량의 염화칼리비료 시용은 전기전도도의 증가로 염류장해를 받을 우려가 있기 때문에 이를 고려하여 시비관리를 해야할 필요가 있는 것으로 판단되었다.

The application of potassium above the optimum level may cause the inhibition of plant growth, fertilizer loss, and environmental pollution. Therefore, application rate of K fertilizer should be recommended on the basis of soil test. In order to determine critical K content in soils causing growth inhibition of vegetables, $1m^2-pot$ experiments with Chinese cabbage and radish were accomplished with various K-application rates. The threshold concentrations of exchangeable potassium causing the inhibition of plant growth were $0.96cmol_c\;kg^{-1}$ for Chinese cabbage in spring, and $1.28cmol_c\;kg^{-1}$ for radish in autumn. Above those concentration levels, the yields of them were decreased with the increase of potassium levels in soils. Germination rate of Chinese cabbage in spring decreased with increase of the electrical conductivity (EC) of soils due to application of potassium fertilizer. In the harvesting stage, the potassium contents of plant were increased with the increase of K application rate while plant uptake of nutrients was decreased at the K adjustment level of over $2.0cmol_c\;kg^{-1}$.

키워드

참고문헌

  1. Cho, C. M. 1985. Ionic transport in soil with ion-exchange reaction. Soil Sci. Soc. Am. J. 15:1379-1386
  2. Hong, C. W. 1977. Soil testing for potassium in upland soils. J. Korean Soc. Soil. Sci. Fert. 10:153-169
  3. Jung, B. G., J. W. Choi, E. S. Yun, J. H. Yoon, and Y. H. Kim. 2001. Monitoring on chemical properties of bench marked upland soils in Korea. Korean J. Soil. Sci. Fert. 34:326-332
  4. Jung, Y. G., C. W. Hong, Y. S. Kim, and D. Y. Cho. 1974. Effect of the base saturation rate of acidic upland soils on the yield of soybean. J. Korean Soc. Soil. Sci. Fert. 7:23-27
  5. Kim, K. Y., T. C. Seo, and Y. C. Kim. 1999. Effect of the milli equivalent radio of K to Ca in the nutrient solution on the growth, yield and blossom end rot of tomatoes grown by perlite culture in hot season. J. Korean Soc. Hort. Sci. 40:652-656
  6. Lee, C. S., S. W, Hwang, H. K. Kwak, Y. J. Lee, and J. K. Park. 1988. Optimum application rates for Chinese cabbage, welsh onion, and carrot in uplands accumulated P and K of Soil. Annual research report, p. 28-34. Agricultural Technology Institute, Rural Development Administration, Suwon, Korea
  7. Lee, K. M., E. G. Jung, and J. Y. Lee. 1982. Soil fertility survey on the major area producing commercial crops. Annual research report, p. 625-646. Agricultural Technology Institute, Rural Development Administration, Suwon, Korea
  8. Martin, J. A., and A. Suarez. 1975. Potassium status of some Costahcan latosols and andosols and their response to potassium fertilization under greenhouse conditions. Soil Sci. Soc. Amer. Proc. 39:74-80 https://doi.org/10.2136/sssaj1975.03615995003900010022x
  9. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press. Inc., San Diego, California, USA
  10. Mengel, K., and E. A. Kirkby. 1987. Principles of plant nutrition, International Potashi Institute, Bern, Switzerland
  11. Nelson, P. V. 1991. Greenhouse operation and management. Prince Hall. Englewood Cliff, NJ, USA
  12. NIAST. 2000. Methods of soil and crop plant analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  13. Park, C. S. 1979. Fertility management of flooded rice soil. J. Korean Soc. Soil. Sci. Fert. 12:153-169
  14. Park, Y. H., J. H. Yoon, and T. S. Kim. 1985. Research on adjustment of exchangeable potassium in upland soil. Annual research report (Chemistry). p. 256-261. Rural Development Administration, Suwon, Korea
  15. RDA. 1999. Fertilization standard of crop plants. Rural Development Administration, Suwon, Korea
  16. Roh, G. A., and S. G. Yun. 2000. Survey on the changes of soil chemistry in agricultural soils. Research Report of Survey on the Changes of Agricultural Environment in 2000. National Institute of Agicultural Science and Technology, Suwon, Korea
  17. Thomas, G. W. 1960. Forms of aluminum in cation exchangers. Trans. Int. Congr. Soil Sci. 2:364-369
  18. Udo, E. J. 1978. Thermodynamics of potassium-calcium and magnesium-calcium exchange reactions on kaolinite soil clay. Soil Sci. Soc. Am. J. 42:556-560 https://doi.org/10.2136/sssaj1978.03615995004200040004x
  19. Volk, N. J. 1934. The fixation of potassium in difficulty available forms in soils. Soil Sci. 37:267-287 https://doi.org/10.1097/00010694-193404000-00003
  20. Woodruff, C. M. 1955. The energies of replacement of calcium by potassium in soils. Soil Sci. Soc. Amer. Proc. 21:52-58
  21. Yoon, J. H., and I. S. Ryu. 1976. Study on influence of base ratio in plant and soil on soybean yield and growth. Annual research report, p. 35-40. Agricultural Technology Institute, Rural Development Administration, Suwon, Korea