• Title/Summary/Keyword: Exchangeable potassium

Search Result 184, Processing Time 0.03 seconds

Physicochemical Properties of Artificial Soil Formulated by Blending Calcined Clay and Coconut Peat and its Effect on Plant Growth (소성 점토다공체 및 코코넛 피트를 혼합한 인공토양의 물리화학적 특성과 식물생육에 미치는 영향)

  • 허근영;강호철;김인혜;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.107-115
    • /
    • 2002
  • This study was carried out to compare artificial soil formulated by blending calcined clay and coconut peat with perlite, then to evaluate this soil as a perlite substitute for use as an artificial planting medium. To achieve this, a determination of the physico-chemical properties and it's effect on plant growth were conducted by comparing those with large perlite grains and small grains. The results are summarized as follows: 1) The bulk density was 0.41g/㎤. This density was lower than that of field soil, but higher than that of large perlite grain(0.23g/㎤) and small grain(0.25g/㎤). The porosity, field capacity, and saturated hydraulic conductivity were 71.3%, 49.2%, and 3.8$\times$10-2cm/s, respectively. The air-permeability, water holding capacity, and drainage were better than or equal to that both large and small perlite grain. 2) It was near-neutral in reaction(pH=6.6). It had a high organic carbon content(65.8g/kg) and a low available phosphoric acid content(84.7mg/kg). It was similar to crop soil in cation exchange capacity(11.4cmol/kg). It had a low exchangeable calcium content(0.71cmol/kg), a low exchangeable magnesium content(0.68cmol/kg), a high exchangeable potassium content(2.54cmol/kg), and a high exchangeable sodium content(1.12cmol/kg). Except for the exchangeable potassium and sodium content, the chemical properties were better than or equal to both large and small grain perlite. The excessive exchangeable potassium or sodium content will inhibit plant growth. 3) In Experiment 1, the plant growth tended to be higher compared to that of large and small perlite gains. But in Experiment 2, it tended to be lower. This might be linked to the excessive exchangeable potassium or sodium content. 4) It could be considered as a renewable perlite substitute for greening of artificial soil. But, it would be necessary to leach the excessive exchangeable potassium or sodium to avoid the risk of inhibiting plant growth.

Potassium Availability and Physical Properties of Upland Soils (밭토양(土壤)의 물리성(物理性)과 가리(加里))

  • Yoo, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.189-201
    • /
    • 1977
  • Some of basic aspects of soil potassium with special reference to soil physical properties were discussed. Data in the Official Soil Series Description(Korea) was analyzed according to soil type, land form, and soil texture to find soil potassium status which may explain different response to potassium application. Exchangeable potassium contents decreased with soil depth irrespective of soil type, land form and soil texture. Change in degree of potassium saturation within soil profile was not so clear as exchangeable potassium but the degree of potassium saturation of A horizon was highest among soil horizon. Soils of terrace and mountain foot slope showed high values both in exchangeable potassium and degree of potassium sauration and only these two soils were classified as soils having exchangeable potassium higher than 0.3 meq per 100g of soil and degree of potassium saturation higher than 5.0%. Exchangeable potassium of fine loamy and fine clayey soils is higher than 0.3 meq per 100g of soil but degree of potassium saturation is lower than 4.0%. Degree of potassium saturation of sandy soils exceeds 5.0% but exchangeable potassium is very low. Soils of rolling, hilly, unmatured and alpine land soils have lower exchangeable potassium and show lower degree of potassium saturation. The highest distribution of exchangeable potassium content irrespective of soil horizons was shown in the range of 0.1-0.2 meq per 100g of soil. The highest distribution of degree of potassium saturation was in the range of 2.0-3.0% in A horizon and 1.0-2.0% in B and C horizons. Of the soil series concerned in this analysis, 27.3% in A horizon, 11.1% in B horizon and 4.0% in C horizon had exchangeable potassium higher than 0.3 meq per 100g of soil and 18.0% in A horizon, 6.3% in B horizon, and 4.1% in C horizon showed degree of potassium saturation higher than 5.0%. The low response of potassium application only to soils in terrace and mountain foot slope may be resulted from the high exchangeable potassium content and high degree of potassium saturation. It is concluded that a great response of potassium application to soils is expected especially in dry season.

  • PDF

Potassium Supply Characteristics in Different Forest Soils (지역별(地域別) 산림토양(山林土壤)의 K(Potassium) 공급(供給) 특성(特性))

  • Jin, Hyun-O;Kim, Jun-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.64-73
    • /
    • 2001
  • Generally potassium in the soil can be remained as water soluble, exchangeable, and available types, respectively. Theses types of potassiums are also known to keep their kinetic relationships to each other. The Purpose on this research was to investigate types and relationships of potassium in the soil, and the characteristics of potassium supply in different forest soils. The results could be summarized as follows; 1. The amounts of available potassium in A and B horizon soils by continuous leaching with 0.01N-HCl were as follows : for A Horizon soils, pohang(Gray brown forest soils), Changsung (Brown forest soils), and Youngwol(Dark red forest soils) were ranged from 0.2me/l00g to 0.8me/100g, Taean(Red and Yellow forest soils) was 0.1-0.6me/100g, Kapyung(Brown forest soils) was 0.2-0.4me/100g. For the B layer, Youngwol was 0.1-0.5me/100g, Pohang, Taean, Kapyung were 0.1-0.4me/100g, Changsung was 0.1-0.3me/100g, respectivly. 2. Of ten times-pulse leaching with 0.01N-HCl for A layer soil, more 80% of total available potassium leaching were recovered by the second pulse as leachate for Pohang, Changsung, Youngwol, while similar amounts of potassium in the leachate were obtained with the third pulse leaching for Kapyung, Taean, respectively, On the other hand, the 80 % release of available potassium from the B layer soil was obtained by the second pulse leaching for all areas investigated. 3. For the relationships between soluble potassium and exchangeable potassium, the exchangeable potassium was increased while the soluble potassium was not changed significantly in B layer. And both soluble potassium and exchangeable potassium in A layer were similar. For the relationship between exchangeable potassium and available potassium in both A and B layers, the amounts of available potassium increased by 1.2 to 1.5 times as the exchangeable potassium increased. 4. For distribution of all types of potassium throughout locations investigated, the types of potassium were in the decreasing orders of available, exchangeable, and soluble. 5. The simplified method for an analysis of all types of potassium by sequential leaching with 0.01N-HCl should be developed not only with respect to time-saving and efficiency but also verification of the relationship between available potassium and tree growth.

  • PDF

Effects of Rice Straw Compost Application on Exchangeable Potassium in Long-term Fertilization Experiments of Paddy Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • In an experiment conducted at the research field of the National Institute of Agricultural Science, we investigated the effects of mineral fertilizer and rice straw compost on exchangeable potassium and K balances, and rice grain yield under a rice single system. The treatments were no fertilization (No fert.), inorganic fertilization (N), inorganic fertilizer (N, P, K) plus rice straw compost at rates of 7.5, 15.0, 22.5, and $30.0ton\;ha^{-1}$ (NPKC7.5, NPKC15.0, NPKC22.5, and NPKC30.0, respectively). The inorganic fertilizers(N, P, K) were added with standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), and potassium ($K_2O$) were applied with $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, respectively. Exchangeable potassium for NPKC15.0 NPKC22.5, and NPK30.0 treatments was higher by $0.05{\sim}0.19cmol_c\;kg^{-1}$ than that of NPKC7.5 treatment. Increasing levels of rice straw compost resulted in an increase in the K balance from - $19.9kg\;ha^{-1}yr^{-1}$ (No fert.) to $41.9kg\;ha^{-1}yr^{-1}$ at NPKC22.5 treatment and $62.9kg\;ha^{-1}$ at NPKC30.0 treatment. Continuous application of rice straw compost with NPK fertilizers affected significantly the rice grain yields. The result of the study imply that the application of more than $22.5ton\;ha^{-1}$ of rice straw compost with NPK fertilizers are recommended as the best fertilization practice for enhancement of crop production and K supplying power of soil in the continuous rice cropping system.

Seasonal Changes in the Productivity and Soil Nutrients of Phragmites communis Community in the Salt Marsh of the Sumjin-River Estuary (섬진강 하구 염습지 갈대군락의 생산성과 토양양분의 계절적 변화)

  • Oh, Kyung-Hwan;Ihm, Byung-Suh
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.90-97
    • /
    • 1983
  • Seasonal changes of the soil nutrient contents and aboveground biomass, relationship between the soil nutrients and the productivity, and the net efficiencies of solar energy conversion were studied in two reeed communities (Phragmites communis Trin.) at the salt marsh in the estuary of the Sumjin-River from April 30 to October 9, 1981. The inorganic nutrients such as exchangeable sodium and potassium of soil were decreased during growing season. The amounts of organic matter, exchangeable sodium and potassium, total nitrogen, and available phosphorus in stand $\prod$ were much more than those of stand $\coprod$ . Productivity of Phragmites communis was positively correlated with the soil nutrients such as available phosphorus, exchangeable potassium and total nitrogen. The maximum dry matter productions of the aboveground parts in stand $\prod$ stand $\coprod$ were $ 1, 120g/m^2; and; 843g/m^2$ in August, and the net coversion efficiencies of PhAR based on growing season (April to September) were 1.77% and 1.33%, respectively.

  • PDF

Nutrient Environments of Japanese Cedar(Cryptomeria japonica) Forests in Cheju Island III. Potassium Supplying Capacity in Soils of Different Site Quality (제주도(濟州道) 삼나무(Cryptomeria japonica) 조림지(造林地)의 영양환경(營養環境)에 관(關)한 연구(硏究) III. 토양(土壤)의 K 공급력(供給力)과 지위(地位))

  • Jin, Hyun-O
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.230-235
    • /
    • 1993
  • This study was carried out to investigate the supplying capacity of various forms(Water soluble, exchangeable, and available) of potassium in soils of different site quality by using surface soils from the Japanese cedar(Cryptomeria japonica) forests in Cheju island. Major results can be summerized as follows. Using continuous leaching methods with 0.01N-HCl, accumulated amounts of available potassium from surface soils of site upper and site low were about 0.6me/100g and 0.4me/100g, respectively. The release ratio of available potassium in the first $1{\ell}$ leaching of 0.01N-HCl to the total available potassium leached with $6{\ell}$ of 0.01N-HCl was over 80% for both sites, and this suggester that surface soil of both sites had the weak potassium adsorptivity as the typical volcanic ash soil. The ratio of the exchangeable potassium to the water soluble potassium was 1 : 1 for both sites. The ratio of the exchangeable potassium to the available potassium was 1 : 1 for the site low but the smaller ratio value for the site upper, indicating that the potassium supplying power of the site upper was greater than that of the site low. Available potassium was highly correlated with exchangeable Ca($0.83^{**}$) and Mg($0.84^{**}$).

  • PDF

Long-term Variations of Chemical Properties in Controlled Horticultural Soils of Gyeongnam Province

  • Lee, Young-Han;Lee, Seong-Tae;Hong, Kang-Pyo;Lee, Sang-Dae;Kim, Je-Hong;Ok, Yong-Sik;Kim, Min-Keun;Kim, HyeRan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.308-312
    • /
    • 2013
  • The monitoring of chemical dynamic changes in controlled horticultural lands is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 200 controlled horticultural soil samples in Gyeongnam province every 4 years from 2000 to 2012. Soil chemical properties such as pH, amount of organic matter, available phosphate, nitrate nitrogen, and exchangeable potassium, calcium, magnesium, and sodium were analyzed. The amount of exchangeable calcium and soil pH were significantly higher in 2012 than in 2000. In 2012, the frequency distribution for values of pH, organic matter, available phosphate, and exchangeable potassium, calcium, and magnesium that were within the optimum range was 16.0%, 22.5%, 11.5%, 3.5%, 2.5%, and 5.0%, respectively. Especially, available phosphate and exchangeable calcium were excess level with portions of 76.0% and 96.5%, respectively. These results indicated that a balanced management of soil chemical properties can reduce the amount of fertilizer applied for sustainable agriculture in controlled horticultural lands.

Field Survey on Soil Chemical Properties as Influenced on Corn Yield (토양(土壤)의 화학성(化學性)이 옥수수 수량(收量)에 미치는 영향(影響))

  • Shin, Cheol-Woo;Kim, Jeong-Je;Hur, Beom-Lyang;Yoon, Jung-Hui
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 1984
  • Correlation study was conducted to establish the optimum test level of soil improvement for good growth of corn from the relationships between the corn yield and soil chemical properties in 16 farmers' demonstration fields. Significant positive correlations between the corn yield and soil chemical properties ; pH, available phosphorus, exchangeable potassium, calcium, magnesium, cation exchange capacity. available silica, and base saturation percentage were showed but organic matter and nitrogen content were not. The proper nutrient contents in soil for expecting corn yield, 1.000kg/10a could be estimated as pH 5.6, available phosphorus 327ppm, exchangeable potassium 0.39me/100g, exchangeable calcium 5.5me/100g, exchangeable magnesium 1.3me/100g, cation exchange capacity 11.5me/100g, available silica 116ppm, base saturation percentage 58 from the relationships between the corn yield and soil chemical properties. Exchangeable aluminium were negatively correlated with not only corn yield but also pH, available phosphorus, exchangeable potassium and exchangeable calcium.

  • PDF

Studies on the Exchangeable Potassium of Paddy Soil and it's Activity Ratio to Other Cations (논토양의 치환성(置換性)칼륨 함량(含量)과 다른 양(陽)이온에 대한 칼륨의 활동량비(活動量比)에 관한 연구)

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.3
    • /
    • pp.77-83
    • /
    • 1981
  • In order to obtain an imformation on the exchangeable potassium and it's activity ratio to other cations in wet paddy top soil grown by rice, soil samples were taken from bottomless middle size (60cm in dia, and height, respectively) round concrete pot being car ride out with an experiment on the split application of potassium in relation to lime and analysed. The pot experiment was being conducted from 1974 at a farm of the City University of Seoul and the wet soil samples were taken from the paddy in the year of 1976. The samples were extracted with $0.1N-AlCl_3$ solution and analysed regarding the elements. Results obtained are as follows : 1. Less exchangeable potassium was extracted from the soils limed than those unlimed when the same amount of potassium was applied immediatly after flooding. However, when the Potassium was applied two weeks after flooding, the reverse was observed. The fact that the exchangeable potassium is increased in the case that potassium fertilizer applied two weeks after flooding explained as due either to the prohibiting effect of iron or less abserption of potassium by the crop. 2. A remarkable decrease of exchangeable potassium of soils was observed during the vigorous growth stage of rice. 3. The activity ratio of $\frac{K}{(Fe^{{+}{+}}){\frac{1}{2}}}$ was remarkabley low after July 16th at which the soil was considerably reduced. 4. The activity ratio $\frac{K^+}{NH^+}$ of limed soil lasted highly until July 16th. It may be resulted from slow progress of ammonification caused by high pH. 5. A positive correlation was found between $Fe^{{+}{+}}$ and $Ca^{{+}{+}}$ under reduced condition. But there was no correlation between $Fe^{{+}{+}}$ and $K^+$ or $NH^+_4$, because that the concentrations of $K^+$ and $NH^+_4$ in soil fluctuates during growing season.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF