Biocontrol of Rhizoctonia solani Damping-off of Cucumber by Bacillus cereus KJA-118

Bacillus cereus KJA-118을 이용한 오이 모잘록병의 생물학적 방제

  • An, Kyu-Nam (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, Chonnam National University) ;
  • Jung, Woo-Jin (Department of Animal Science, Chonnam National University) ;
  • Chae, Dong-Hyun (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, Chonnam National University) ;
  • Park, Ro-Dong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, Chonnam National University) ;
  • Kim, Tae-Hwan (Department of Animal Science, Chonnam National University) ;
  • Kim, Yong-Woong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, Chonnam National University) ;
  • Kim, Young-Cheol (Division of Applied Plant Science, APSRC, Chonnam National University) ;
  • Cha, Gyu-Suk (Division of Civil and Environmental Engineering, Kwangju University) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Institute of Agriculture Science and Technology, APSRC, Chonnam National University)
  • 안규남 (전남대학교 생물환경학과) ;
  • 정우진 (전남대학교 동물자원학과) ;
  • 채동현 (전남대학교 생물환경학과) ;
  • 박노동 (전남대학교 생물환경학과) ;
  • 김태환 (전남대학교 동물자원학과) ;
  • 김용웅 (전남대학교 생물환경학과) ;
  • 김영철 (전남대학교 농생물학과) ;
  • 차규석 (광주대학교 환경공학과) ;
  • 김길용 (전남대학교 생물환경학과)
  • Received : 2003.03.25
  • Accepted : 2003.07.23
  • Published : 2003.08.30

Abstract

A bacterium, KJA-118 showing a strong chitinase activity, was isolated and identified as Bacillus cereus. The strain produced maximum level of chitinase, when grown aerobically at $30^{\circ}C$ for 4 days in basal broth containing 1% colloidal chitin in the initial pH adjusted to 6.0. Among various carbon sources such as crab shell powder, chitin powder, colloidal chitin, and R. solani mycelium, maximum chitinase activity was found in culture broth supplemented with R. solani mycelium. When KJA-118 was incubated with R. solani, the cell wall of the fungus was found to be completely destroyed. SDS-PAGE and active staining results revealed that KJA-118 produced three isoforms of chitinase with molecular weights of 68 kDa, 47 kDa, and 37 kDa. When the suspension of KJA-118 was treated to cucumber seedlings, reducing rate of damping-off caused by R. solani was about 28.1%.

해안가 토양으로부터 강력한 chitinase 활성을 가진 Bacillus cereus KJA-118이 분리.동정되었다. B. cereus KJA-118은 1% colloidal chitin이 포함된 배지를 pH 6.0으로 조절한 후 $30^{\circ}C$ 에서 4일동안 호기적으로 배양했을 때 가장 높은 chitinase 효소활성을 보였다. 탄소원 (crab shell powder, chitin powder, colloidal chitin, and R. solani 균사)에 따른 chitinase 활성은 R. solani 균사를 사용했을 때 가장 높았다. Glycol chitin 0.01%가 포함된 gel에서 전기영동 후 활성 염색한 결과, B. cereus KJA-118에 의해 생산되는 chitinase는 분자량이 68, 47, 37 KDa인 3개의 isoform이 검출되었다. 액체 배지에서 미리 배양한 B. cereus KJA-118과 R. solani를 다시 혼합 배양했을 때, 곰팡이의 세포벽이 완전히 파괴되었다. R. solan가 감염된 토양에 B. cereus KJA-118의 배양액을 처리했을 때 28.1%의 오이 모잘록병 억제 효과를 확인하였다.

Keywords

References

  1. Agrios, G. N. 1988. Plant Pathology (3rd ed.). Academic Press, INC, San Diego, USA
  2. Asaka, 0., and M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085
  3. Baek, J.M., C.R. Howell, and C.M. Kenerley. 1999. The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr. Genet. 35:41-50 https://doi.org/10.1007/s002940050431
  4. Bagnasco, P., L. Fuente, G. Gualtieii, F. Noya, and A. Arias. 1998. Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol. Biochem. 30:1317-1322 https://doi.org/10.1016/S0038-0717(98)00003-0
  5. Bradford, M.M. 1976. A rapid and sensitive method for the quantilation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Downing, K.J., and J.A. Thomson. 2000. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can. J. Microbiol. 46:363-369 https://doi.org/10.1139/cjm-46-4-363
  7. Elad, Y., I. Chet, and Y. Henis. 1982. Degradation of plant pathogenic fungi by Trichoderma hurzicinum. Can. J. Microbiol. 28:719-725 https://doi.org/10.1139/m82-110
  8. Emmert, E.A.B., and J. Handelsman. 1999. Biocontrol of plant disease: a Gram positive perspective. FEMS Microbiol. Lett. 171:1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  9. Godoy, G., R. Rodriguez-Kabana, and G. Morgan-Jones. 1982. Parasitism of eggs of Heterodera gtycines and Melodogyne arenaria by fungi isolated from cysts of H. glycines. Nematropica. 12:111-119
  10. Inbar, J., and I. Chet. 1991. Evidence that chitinase produced by Aeroinonas caviae is involved in the biological control of soil-bome plant pathogens by this bacterium. Soil Biol. Biochem. 23:973-978 https://doi.org/10.1016/0038-0717(91)90178-M
  11. Kang, S.W., M.J. Chung, I.H. Yeo, and D.H. Kim. 1998. Isolation and characterization of Pseudomonas vesicularis KW-15 for producing chitinase. Korean J. Chitm Chitosan. 3:303-312
  12. Kwok, 0.C.H., P.C. Fahy, H.A.J. Hoitink, and G.A. Kuter. 1987. Interactions between bacteria and Trichoderma hamanum in suppression of Rhiwctonia damping-off in bark compost media. Phytopathol. 77:1206-1212 https://doi.org/10.1094/Phyto-77-1206
  13. Mabuchi, N., I. Hashizume, and Y. Araki. 2000. Characterization of chitinases excreted by Bacillus cereus CH. Can. J. Micorobiol. 46:370-375 https://doi.org/10.1139/cjm-46-4-370
  14. Manocha, M.S. and V. Govindsamy. 1998. Chitinolytic enzymes of fungi and their involvement in biocontrol of plant pathogens. P. 309-327. In J.B. Greg and L.D Kuykendall (ed.) Plant-microbe interactions and biological control. Marcel Dekker, New York, USA
  15. National Institute of Agricultural Science and Technology. 2000. The method of soil and plant analysis. Rural Development Administration, Suwon, Korea
  16. Ordentlich, A., Y. Elad, and I. Chet. 1988. The role of chitinase of Serratia marcescens in biocontrol of Scterotium rolfsii. Phytopathol. 78:84-88
  17. Osbum, R.M., J.L. Milner, E.S. Oplinger, R.S. Smith, and J. Handelsman. 1995. Eft'ect of Bucillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79:551-556 https://doi.org/10.1094/PD-79-0551
  18. Patil, R.S., V. Ghormade, and M.V. Deshpande. 2000. Chitinolytic enzymes: an exploration. Enzyme Microb. Tech. 26:473-483 https://doi.org/10.1016/S0141-0229(00)00134-4
  19. Pleban, S., L. Chernin, and I. Chet. 1997. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett. Appl. Microbiol. 25:284-288 https://doi.org/10.1046/j.1472-765X.1997.00224.x
  20. Shah, D.M. 1997. Genetic engineering for fungal and bacterial diseases. Curr. Opin. Biotech. 8:208-214 https://doi.org/10.1016/S0958-1669(97)80104-8
  21. Singh, P.P., Y.C. Shin, C.S. Park, and Y.R. Chung. 1998. Biological control of Fusarium wilt of cucumber by chiyinolytic bacteria. Phytopathol. 89:92-99
  22. Trachuk, L.A., T.M. Shemiakina, G.G. Chestukhina, and V.M. Stepanov. 1996. Bacillus cereus chitinase: Isolation and characteristics. Biokhimiia. 61:357-368
  23. Trudel, J., and A. Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178:362-366 https://doi.org/10.1016/0003-2697(89)90653-2
  24. Wang, S.L., and J.R. Hwang. 2001. Microbial reclamation of shellfish wastes for the production of chitinases. Enzyme Microb. Technol. 28:376-382 https://doi.org/10.1016/S0141-0229(00)00325-2
  25. Young, J.P.W., H.L. Downer, and B.D. Eardly 1991. Phylogeny of phototrophic Rhiwbium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNAgene segment. J. Bacteriol. 173:2271-2277 https://doi.org/10.1128/jb.173.7.2271-2277.1991