Microstructural Characteristics of the Fuel Cladding Tubes Irradiated in Kori Unit 1

  • Kim H.G. (Korea Atomic Energy Research Institute) ;
  • Baek J.H. (Korea Atomic Energy Research Institute) ;
  • Lee M.H. (Korea Atomic Energy Research Institute) ;
  • Chun Y.B. (Korea Atomic Energy Research Institute) ;
  • Jeong Y.H. (Korea Atomic Energy Research Institute)
  • 발행 : 2003.10.01

초록

In order to evaluate the microstructural characteristics of irradiated fuel claddings (Zircaloy-4), two irradiated specimens having different burnups (18 GWD/MTU and 42 GWD/MTU) were prepared from the G23-M4 fuel rods, which were loaded in Kori Unit 1 for 4 fuel cycles. The oxide thickness, hydride morphology and hardness change were characterized by an optical microscope and a micro-hardness tester after preparing the irradiated specimens in the PIE (Post Irradiation Examination) facilities. The dislocation loops and the amorphous transformation of precipitates induced by the neutron irradiation in the nuclear plant were also examined by a TEM. As the burnup increased from 18 GWD/MTU to 42 GWD/MTU, the oxide thickness increased from $6.0{\mu}m\;to\;25.3{\mu}m$ and the contents of hydrogen pick-up in the Zr matrix also greatly increased. In the comparison of the hardness of the unirradiated fuel cladding, the amount of hardness increase was nearly $9.3\%\;and\;24.2\%$ for the irradiated samples of 18 and 42 GWD/MTU, respectively. Both -type dislocation loops and -type dislocation components were observed simultaneously in the irradiated specimens and the densities of the dislocation was increased by increasing the burnup. The precipitates in both the irradiated specimens were amorphously transformed by the neutron irradiation and the trend of the amorphous transformation of the precipitates was enhanced at a higher burnup.

키워드

참고문헌

  1. S.N. Buckley, Proc. Int. Conf. on Properties of Reactor Materials and the Effects of Radiation Damage, Ed. D.J. Littler 413, (Butterworths, London, 1962)
  2. D.O. Norhwood, Atomic energy review, 15. 4. (1997) p. 547
  3. D.O. Northwood, R.W. Gilbert, L.E. Bahen, P.M. Kelly, R.G. Blake, A. Jostsons, P.K. Madden, D. Faulkner, W. Bell and R.B. Adamson, J. Nucl. Mater., 379, 79 (1979) https://doi.org/10.1016/0022-3115(79)90103-X
  4. M.A. Griffiths, J. Nucl. Mater., 190, 159 (1988) https://doi.org/10.1016/0022-3115(88)90093-1
  5. M.A. Griffiths, J. Nucl. Mater., 225, 205 (1993) https://doi.org/10.1016/0022-3115(93)90085-D
  6. M.A. Griffiths and R.W. Gilbert, J. Nucl. Mater., 169, 150 (1987) https://doi.org/10.1016/0022-3115(87)90072-9
  7. S.R. Mcewen, J. Faber, A.P. Turner, Acta. Metall., 657, 5 (1983)
  8. R.A. Holt, J. Nucl. Mater., 310, 159 (1988) https://doi.org/10.1016/0022-3115(88)90099-2
  9. R.W. Gilbert, M.A. Griffiths, G.J.C. Carpenter, J. Nucl. Mater., 265, 135 (1985) https://doi.org/10.1016/0022-3115(85)90086-8
  10. W.J.S. Yang, R.P. Tucker, B. Cheng, and R.B. Adamson, J. Nucl. Mater., 185, 138 (1986) https://doi.org/10.1016/0022-3115(86)90005-X
  11. D. Charquet, E. Alheritiere, 'Second phase particles and matrix properties on Zircaloys', Proc. Workshop on second phase particles in Zircaloys, Erlangen FRG, Kern Tech. Gesell. (1985) P.5
  12. J.P. Mardon, D. Charquet, and J. Senevat, Proc. Of Int. Topical Mtg. on Fuel Performance, West Palm Beach, ANS, La Grange Park, ILL. 646, (1994)
  13. L.F. Van Swam, F. Garzarolli, and E. Steiberg, Proc. Of Int. Topical Mtg. on Fuel Performance, West Palm Beach, ANS, La Grange Park, ILL. 303, (1994)
  14. J.P. Mardon, D. Charquet, and J. Senevat, Zirconium in the Nuclear Industry, ASTM STP 1354, 505, (2000)
  15. P.V. Shebaldov, M.M. Peregud, A.V. Nikulina, Y.K. Bililashvili, A.F. Lositski, N.V. Kuz' menko, V.I. Belov, and A.E. Novoselov, Zirconium in the Nuclear Industry, ASTM STP 1354, 545, (2000)
  16. C. Hellio, C. H. De Novion, and L. Boulanger, J. Nucl. Mater., 368, 159 (1988) https://doi.org/10.1016/0022-3115(88)90103-1
  17. S.N. Buckley, R. Bullough, and M.R. Hayns, J. Nucl. Mater., 283, 89 (1980) https://doi.org/10.1016/0022-3115(80)90061-6
  18. R.A. Holt, M.A. Griffiths, and R.W. Gilbert, J. Nucl. Mater., 51, 149 (1987) https://doi.org/10.1016/0022-3115(87)90497-1
  19. Y. De Carlan, C. Regnard, and M.A. Griffths, Zirconium in the Nuclear Industry, ASTM STP 1295, 638, (1996)
  20. R.A. Holt, A.R. Causey, and M.A. Griffiths, Zirconium in the Nuclear Industry, ASTM STP 1354, 86, (2000)
  21. R.A. Holt and A.R. Causey, J. Nucl. Mater., 1, 28 (1968) https://doi.org/10.1016/0022-3115(68)90055-X
  22. A. Motta and C. Lemaignan, J. Nucl. Mater., 277, 195 (1992) https://doi.org/10.1016/0022-3115(92)90519-Q
  23. D. Pecheur, F. Lefebure, A. Motta, C. Levaignan, and D. Charquet, J. Nucl. Mater., 445, 205 (1993) https://doi.org/10.1016/0022-3115(93)90108-B
  24. P.Y. Haung, S.T. Mahmood, and R.B. Adamson, Zirconium in the Nuclear Industry, ASTM STP 1295, 726, (1996)
  25. A.V. Nikulina, Y.K. Bililashili, P.P. Markelov, M.M. Peregud, V.A. Kotrekhov, A.F. Lostisky, N.Y. Kuzmenko, Y.P. Shevnin, V.K. Shamardin, G.P. Kobylyansky, and A.E. Nivoselov, Zirconium in the Nuclear Industry, ASTM STP 1295, 785, (1996)