DOI QR코드

DOI QR Code

Cadmium Toxicity on the Survival Rate and Activity of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae)

대복 (Gomphina veneriformis)의 생존 및 운동성에 미치는 카드뮴 (cd)의 독성

  • PARK Jung Jun (Department of Aqualife Medicine, Yosu National University) ;
  • LEE Jung Sick (Department of Aqualife Medicine, Yosu National University)
  • 박정준 (여수대학교 수산생명의학과) ;
  • 이정식 (여수대학교 수산생명의학과)
  • Published : 2003.10.01

Abstract

This study observed change of survival rate, activity and foot structure of the equilateral venus (Gomphina veneriformis) exposed to cadmium. Survival rate and activity of the clam exposed to cadmium was reduced with increase of exposure duration and concentration. Change of survival rate and activity was observed in the early exposure time (7 days) in the condition of above 1 77 mg/L and 0.88 mg/L, respectively. Activity reduction of the clam exposed to cadmium seems to be caused by epidermal layer deformation, muscle fiber fragmentation and muscular layer collapse of the foot.

Keywords

References

  1. Abd Allah, A.T., M.Q.S. Wanas and S.N. Thompson. 1997. Effects of heavy metals on survival and growth of Biomphalaria glabrata Say (Gastropoda: Pulmonata) and interaction with schistosome infection. J. Moll.Stud., 63, 79-86 https://doi.org/10.1093/mollus/63.1.79
  2. Adams, T.G., G.J. Atchison and R.J. Vetter. 1981. The use of the three-ridge clam, Amblema perplicata to monitor trace metal contamination. Hydrobiologia,83, 67-72 https://doi.org/10.1007/BF02187151
  3. Ahsanullah, M. 1976. Acute toxicity of cadmium and zinc to seven invertebrate species from Western port, Victoria. Aust. J. Mar. Freshwat. Res., 27, 187-196 https://doi.org/10.1071/MF9760187
  4. Ansell, A.D. 1961. The functional morphology of the British species of Veneracea (Eulamellibranchia). J.Mar. BioI. Ass. UK, 41, 489-515 https://doi.org/10.1017/S0025315400024012
  5. Eble, A.F. 2001. Biology of the hard clam. In: Anatomy and Histology of Mercenaria mercenaria, Vol. 6A, Kraeuter J.N. and M. Castagna, ed. Elsevier, New York, pp. 117-220
  6. Gregory, M.A., R.C. George, D.J. Marshall, A. Anandraj and T.P. Mcclurg. 1999. The effect of mercury exposure on the surface morphology of gill filaments in Perna perna (Mollusca: Bivalvia). Mar. Pollut. Bull., 39, 116-121 https://doi.org/10.1016/S0025-326X(99)00119-8
  7. Hansen, J.A., P.G. Welsh, J. Lipton and M.J. Suedkamp. 2002. The effects of long-term cadmium exposure on the growth and survival of juvenile bull trout, Salvelinus confluentus. Aquat. Toxicol., 58, 165-174 https://doi.org/10.1016/S0166-445X(01)00233-8
  8. Howell, R., A.M. Grant and N.E.J. Maccoy. 1984. Effect of treatment with reserpine on the change in filtration rate of Mytilus edulis subjected to dissolved copper. Mar. Pollut. Bull., 15, 436-439 https://doi.org/10.1016/0025-326X(84)90142-5
  9. Jeng, M.S., W.L. Jeng, T.C. Hung, C.Y. Yeh, R.J. Tseng, P.J. Meng and B.C. Han. 2000. Mussel watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-98. Environ. Pollut., 110, 207-215 https://doi.org/10.1016/S0269-7491(99)00304-8
  10. Lobel, P.B. 1987. Intersite, intrasite and inherent variability of the whole soft tissue zinc concentrations of individual mussels Mytilus edulis: Importance of the kidney. Mar. Environ. Res., 21, 59-71 https://doi.org/10.1016/0141-1136(87)90074-2
  11. McConnell, M.A. and R.C. Jarrel. 1995. The estuarine clam, Rangia cuneata (Gray) as a biomonitor of heavy metals under laboratory and field conditions. Am. Malacol. Bull., 11, 191-201
  12. Od ak, N., D. Martin i ,T. Zvonari and M. Branica. 1994. Bioaccumulation rate of Cd and Pb in Mytilus galloprovincialis foot and gills. Mar. Chem., 46, 119-131 https://doi.org/10.1016/0304-4203(94)90050-7
  13. Phillips, D.J.H. 1977. The common mussel, Mytilus edulis as an indicator of trace metals in Scandinavian waters. I. Zinc and cadmium. Mar. Biol., 43, 283-291 https://doi.org/10.1007/BF00396922
  14. Pip, E. 1995. Cadmium, lead and copper in freshwater mussels from the Assiniboine River, Manitoba, Canada. J. Moll. Stud., 61, 295-302 https://doi.org/10.1093/mollus/61.3.295
  15. Regoli, F. and E. Orlando. 1994. Accumulation and subcelluar distribution of metals (Cu, Fe, Mn, Pb and Zn) in the Mediterranean mussel, Mytilus galloprovincialis during a field transplant experiment. Mar. Pollut. Bull., 28, 592-600 https://doi.org/10.1016/0025-326X(94)90360-3
  16. Soh, C.T., I.S. Yoo, H. Park, S.H. Kim, J.J. Kim and D.Y. Min. 1993. Experimental study on the effect of cadmium containing shellfish by the long term intake. Kor. J. Malacol., 9, 85-93. (in Korean)
  17. Sunila, I. 1986. Chronic histopathological effects of shortterm copper and cadmium exposure on the gill of the mussels, Mytilus edulis. J. Invert. Pathol., 47, 125-142 https://doi.org/10.1016/0022-2011(86)90040-6
  18. Sunila, I. 1988. Acute histopathological responses of the gill of the mussels, Mytilus edulis, to exposure by environmental pollutants. J. Invert. Pathol., 52, 137-141 https://doi.org/10.1016/0022-2011(88)90112-7
  19. Sunila, I. and R. Lindstrom. 1985. Survival, growth and shell deformities of copper-and cadmium-exposed mussels, Mytilus edulis L. in brackish water. Estuar. Coast. Shellf. Sci., 21, 555-565 https://doi.org/10.1016/0272-7714(85)90056-3
  20. Suzuki, K.T. 1982. Induction and degradation of metallothionein and their relation to the toxicity of cadmium. In: Biological Roles of Metallothionein. Foulkes, E.C. ed. Elsevier, New York, pp. 215-235
  21. Ward, R.E. 1990. Metal concentrations and digestive gland lysosomal stability in mussels from Halifax Inlet, Canada. Mar. Pollut. Bull., 21, 237-240 https://doi.org/10.1016/0025-326X(90)90341-5
  22. Yoo, J.S. 1976. Korean Shells in Color. Iljisa Pub. Co.,Seoul, pp. 196