DOI QR코드

DOI QR Code

Mortality of Fishes and Shellfishes to Harmful Algal Blooms

  • Lee Sam Geun (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute) ;
  • Kim Hak Gyoon (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute) ;
  • Cho Eun Seob (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute) ;
  • Lee Chang Kyu (Marine, Harmful Organisms Division, National Fisheries Research and Development Institute)
  • Published : 2003.09.01

Abstract

Mortality of several species of fish and shellfish exposed to Harmful Algal Blooms (HABs) caused by Cochlodinium polykrikoides, Heterosigam akashiwo, Alexandrium tamarense, Eutreptiella gymnastica, Heterocapsa triquetra and Prorocentrum micans was studied. When fish were exposed to a cell density of 8,000 cells $mL^{-1}$ in C. polykrikoides, $35\%$ of flatfish and darkbanded rockfish died within 48 hrs. However, jacopever rockfish had mortality of higher than $85\%$. Rock bream, filefish and red sea bream showed $100\%$ mortality within 10 hrs with an exposure cell density of 8,000 cells $mL^{-1}$. The rest of HABs except for C. polykrikoides showed that there was no fish and shellfish death throughout the 48 hrs even in the maximum cell density of 100,000 cells $mL^{-1}$ These results imply that C. polykrikoides can have a serious impact on fish mortality and it is regarded as an ichthyotoxic dinoflagellate. The fish death may be attributed to anoxia caused by a combination of the production of reactive oxygen species (ROS) and polysaccharide from C. polykrikoides during blooms.

Keywords

References

  1. Chang, F.H., C. Anderson and N.C. Boustead. 1990. First record of Heterosigma (Raphidophyceae) bloom with associated mortality of cage salmon in Big Glory Bay, New Zealand. New Zealand J. Mar. Fresh. Wat. Res., 24, 461-469 https://doi.org/10.1080/00288330.1990.9516437
  2. Cho, E.S., C.S. Kim, S.G. Lee and Y.K. Chung. 1999. Binding of Alcian blue applied to harmful microalgae from Korean coastal waters. Bull. Nat'l. Fish. Res. Dev. Inst. Korea, 55, 133-138
  3. Hallegraeff, G.M., D.M. Anderson and A.D. Cembella. 1995. Manual on Harmful Marine Microalgae. Intergovernmental Oceanographic Commission(of UNESCO), pp. 551
  4. Hasui, M., M. Matsuda and K. Okutani. 1995. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. BioI. Macro., 17, 293-297 https://doi.org/10.1016/0141-8130(95)98157-T
  5. Kim, C.S., S.G. Lee, C.K. Lee, H.G. Kim and J. Jung. 1999. Feactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium po lykriko ides . J. Plank. Res., 21, 2105-2115 https://doi.org/10.1093/plankt/21.11.2105
  6. Kim, H.G. , S.G. Lee and K.H. An. 1996. Interannual changes in Heterosigma akashiwo blooms in Korean coastal waters. Bull. Nat'l. Fish. Res. Dev. Inst. Korea, 52, 1-14. (in Korean)
  7. Kim, H.G. , S.G. Lee, K.H. An. 1997. Recent red tides in Korean coastal waters. Nat'l. Fish. Res. Dev. Inst. Korea, Kudeok, Busan, pp. 280. (in Korean)
  8. Mackenzie, L. 1991. Toxic and noxious phytoplankton in Big 310ry Bay, Stewart Island, New Zealand. J. Appl. Phycol., 3, 19-34 https://doi.org/10.1007/BF00003916
  9. Montoya, N.G. , R. Akselman, J. Franco and J.I. Carreto. 1996. Paralytic shellfish toxins and mackerel (Scomber japonicus) mortality in the Argentine Sea. In: Harmful and Toxic Algal Blooms. Yasumoto, T., Y. Oshima and Y. Fukuyo, eds. Intergovernmental Oceano-graphic Commission of UNESCO, pp. 15-18
  10. Oda, T., A. Ishimatsu, M. Shimada, S. Takeshita and T. Muramatsu. 1992. Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar. Biol., 112, 505-509 https://doi.org/10.1007/BF00356297
  11. Onoue, y. and K. Nozawa. 1989a. Zinc-bound PSP toxins separated from Cochlodinium red tide. In: Red tides; Bilogy, Environmental Science and Toxicology. Okaichi T., D. Anderson and T. Nemoto, eds. Elsevier Science Publishing, New York, 359-366
  12. Onoue, Y. and K. Nozawa. 1989b. Separation of toxins from harmful red tides occurring along the coast of Kagoshima prefecture. In: Red tides; Bilogy, Environmental Science and Toxicology. Okaichi, T.,D. Anderson and T. Nemoto, eds. Elsevier Science Publishing, New York, 371-374
  13. Shimada, M., N. Akagi, H. Goto, M. Watanabe, H. Watanabe, M. Nakanishi, S. Yoshimatsu and C. Ono. 1991. Free radical production by the red tide alga, Chattonella antiqua. J. Histochem., 23, 361 https://doi.org/10.1007/BF01042181
  14. Shimada, M., S. Kawamoto, Y. Nakatsuka and M. Watanabe. 1993. Localization of superoxide anion in the red tide alga Chattonella antiqua. J. Histo. Cyto., 41, 507-511 https://doi.org/10.1177/41.4.8383714
  15. Tanaka, K., M. Yoshinori and M. Shimada. 1994. Generation of superoxide anion radicals by the marine phytoplankton organism, Chattonella antiqua. J. Plank. Res., 16, 161-169 https://doi.org/10.1093/plankt/16.2.161
  16. Tanaka, K., S. Yoshimatsu and M. Shimada. 1992. Generation of superoxide anions by Chattonella antiqua: Possible causes for fish death caused by red tide. Experientia, 48, 888-890 https://doi.org/10.1007/BF02118427
  17. Tyrrell, J.V., P.R. Bergquist, R.D. Gray, L. Mackenzie and P.L. Bergquist. 1996. Phylogeny of the Raphi-dophytes Heterosigma carterae and Chattonella antiqua using V4 domain SSU rDNA sequences. Bio. Syst. Ecol., 24, 221-235 https://doi.org/10.1016/0305-1978(96)00025-7