Abstract
To get a periodic trim solution from Level II helicopter flight dynamic equations, DAE based PPT A (partial Periodic Trimming Algorithm) has been proposed. Iterative update of state variables from PPT A can cause a numerical instability in DAE solver which needs compatible initial conditions. By simply adjusting the order of DAE solver a periodic trim can be obtained with good accuracy. Application for CBM (Common Baseline Model) helicopter showed the same trim result as harmonic balance method and the effective elimination of unrealistic initial responses at the start of flight simulation.
Lever II 헬리콥터 비행운동 방정식으로부터 주기성 트림해를 구하기 위해 DAE 해법에 근거한 PPTA(Partial Periodic Trimming Algorithm)를 제안하였다. PPTA의 반복계산으로 수정된 상태변수는 적합한 초기조건이 요구되는 DAE해법에서 수치불안정을 일으킬 수 있다. 간단하게 DAE 차수를 조절함으로써 정확한 주기성 트림을 얻을 수 있었다. 수치해법을 CBM(Common Baseline Model) 헬리콥터에 적용하여 harmonic balance 방법과 동일한 트림해를 얻었으며 시뮬레이션 초기의 과도응답을 효과적으로 제거할 수 있음을 밝혔다.