Cleaner Production System in Dyeing & Finishing Its Approaching Mehods

염색가공분야에서 청정생산활동 접금방법

  • Received : 2003.05.15
  • Accepted : 2003.06.26
  • Published : 2003.06.01

Abstract

The aim of study was to suggest a methodology for applying cleaner production technology in dyeing & finishing process of textile materials. To accomplish cleaner production, we performed consulting activity in dyeing factory, which composed of following different procedures. First, we organized consulting team with specialists for dyeing, energy and chemicals, and visited dyeing companies for the purpose of doing basic investigation such as analysis of process, chemicals & effluents, condition of equipment and process flow of products. Environmental aspect of raw materials (dyestuff, chemicals) was assessed by TOC, COD, BOD, and effluent of that was assessed by TOC, COD, BOD, TDS and pH. Second, We find out the problems in dyeing&finishing process from the view point of dyeing process, energy, raw materials and process management by utilizing MB (material balance), LCA(Life Cycle Assessment), EB(Energy Balance). Third, we generated the solutions to achieve optimal process condition by brain storming method, and then implemented the solutions to each process. Finally, we determined their effectiveness after considering the results of repeating trials for the solutions. Cleaner production could be achieved by keeping optimal process conditions, equipment modification, improved production management, and on-site reuse or recycling.

본 연구는 청정생산기술의 개념을 염색가공분야에 도입시키기 위한 방법론을 제시한 것이다. 먼저 각 분야별 전문가로 이루어진 진단지도팀을 구성하여 대상업체에서 진행중인 제조공정 진행상태를 파악하고 사용하는 원부자재의 성능 및 환경적 분석과 폐수의 환경적 분석을 실시하였다. 원부자재(조제 및 염료)의 환경성은 TOC, CODMn, CODCr, $BOD_5$의 항목으로 평가하였고, 발생되는 폐수는 TOC, CODMn, CODCr, $BOD_5$, TDS, pH의 항목으로 평가하였다. 또 물질수지 분석과 LCA 평가 후 다음 단계로 공정, 에너지, 원부자재, 생산관리, 일반관리에서의 문제점을 도출한 후 그 중에서 개선 대상을 선정하고 마지막 단계에서 각 부분에 대해 지도하여 개선토록 한 후 최종 개선 효과를 분석하였다.

Keywords

Acknowledgement

Supported by : 산업자원부