The photochemical reactions of iron species in rain and snow in Higashi-Hiroshima, Japan

  • Kim, Do Hoon (Medi-Chem Institute, KRD CO. LTD.) ;
  • Takeda, Kazuhiko (Faculty of Integrated of Arts and Sciences, Hiroshima University) ;
  • Sakugawa, Hiroshi (Faculty of Integrated of Arts and Sciences, Hiroshima University) ;
  • Lee, Jin Sik (Research & Educational facilities center, Kyungsung University)
  • Received : 2003.04.30
  • Accepted : 2003.10.16
  • Published : 2003.12.25

Abstract

This paper describes the concentrations of total dissolved iron (tFe) and $Fe^{2+}$ in rainwater and snow, the relationship of Fe species with other metals and ions in bulk rainwater, and the $Fe^{2+}$ generation mechanism in aqueous samples in rainwater of time series collection. Volume weight mean concentrations of tFe and $Fe^{2+}$ were 3.22 and $1.25{\mu}gL^{-1}$ in bulk rainwater, and 50.1 and $43.5{\mu}gL^{-1}$ in snow, respectively. $Fe^{2+}$ was significant fraction to the tFe, accounted for 3.25-93.4% of the tFe in rainwater and 87% in snow. We also investigated temporal variations of tFe, $Fe^{2+}$, other metals and ions in rainwater of time series collection during rain event. Although the concentration range of tFe was different from those of other species, a decreasing trend of tFe from the beginning of the rain event was similar with other species. However, though $Fe^{2+}$ did not show such a decreasing trend, $Fe^{2+}$/tFe was in good correlation with solar radiation. From the results of multiple linear regression analysis and thermodynamic calculations (Mineql+), $Fe^{2+}$ in our samples may be generated from photochemical reduction of $Fe^{3+}$ species (such as $Fe(OH)^{2+}$,$Fe(OH)^{2+}$ and Fe-oxalate) at daytime.

Keywords

References

  1. T. E. Graedel, M. L. Mandich and C. J. Weschler, J. Geophys. Res., 91, 5205(1986)
  2. Y. Zuo and J. Hoigne, Environ. Sci. Technol., 26, 1014(1992)
  3. B. C. Faust and R. G. Zepp, Environ. Sci. Techno!., 27, 2517(1993)
  4. R. G. Zepp, S. C. Faust and J. Hoigne, Environ. Sci. Technol., 26, 313(1992)
  5. K. A. Hislop and J. R. Bolton, Environ. Sci. Techno!., 33, 3119(1999)
  6. O. L. Sedlek, J. Hoigne, M. M. David, R. N. Colvile, W. Wiepercht, J. A. Lind and S. Fuzzi, Atmospheric Environment, 31, 2515(1997)
  7. A. Wolf, F. Deutsch, P Hoffmann and H. M. Ortner, Journal of Atmospheric Chemistry, 37, 125(2000)
  8. Y. Erel, S. O. Pehkonen and M. R. Hoffmann, J. Geophys. Res., 98, 18423(1993) https://doi.org/10.1029/93JD01575
  9. s.c. Faust and J. Hoigne, Atmospheric Environment, 24A, 79(1990)
  10. P. Behra and L. Sigg, Nature, 344, 419 (1990)
  11. G. Zhung, Z.Yi, and G. T. Wallace, Marine Chemistry, 50, 41-50(1995)
  12. R. J. Kieber, K. Williams, J. D. Wielly, S. Skrabal and G. B. Avery Jr., Marine Chemistry, 73, 83(2001)
  13. D. H. Kim, K. Takeda, H. Sakugawa and J. S. Lee, Analytical Science & Technology, 14(6), 510-515(2001)
  14. D. H. Kim, K. Takeda, H. Sakugawa and J. S. Lee, Analytical Science & Technology, 15(4), 321-328(2002)
  15. K. Takeda, K. Mammoto, T. Minamikawa, H. Sakugawa and K. Fujiwara, Atmospheric Environment, 34, 4525(2000) https://doi.org/10.1016/S1352-2310(00)00103-5
  16. T. Arakaki, T. Miyake, M, Shibata and H. Sakugawa, The Chemical Society of Japan, 9, 619(1998)
  17. W. Luo, Atmospheric Environment, 35, 2963 (2001)
  18. S. O. Pehkonen, Y. Erel, and M. R. Hoffmann, Environ. Sci. Technol., 26, 1731 (1992)
  19. D.M. McKnight, B.A. Kimball and K.E. Bencala, Science, 240, 637( 1988)