Relative Importance of Bottom- up vs. Top-down Controls on Size-structured Phytoplankton Dynamics in a Freshwater Ecosystem: I. Temporal and Spatial Variations of Size Structure

담수성 식물플랑크톤의 크기별 동태에 대한 상향식, 하향식 조절간의 상대적 중요도 조사: I. 크기구조의 시 ${\cdot}$ 공간적 변동

  • Kim, Jong-Min (Youngsan-River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Sin, Yong-Sik (Division of Ocean Engineering, Mokpo National Maritime University)
  • 김종민 (국립환경연구원 영산강물환경연구소) ;
  • 신용식 (목포해양대학교 해양시스템공학부)
  • Published : 2003.12.31

Abstract

Temporal and spatial variations of size-structured phytoplankton (chlorophyll a) were investigated over an annual cycle (February-October, 2003) to elucidate phytoplankton dynamics in the Juam Reservoir, Chonnam. Physical properties were also measured to investigate the relationship between the properties and temporal and spatial variations of size structured phytoplankton using simple linear regression. Phytoplankton (chlorophyll a) were grouped into three size classes: micro-size(> 20 ${\mu}m$), nano-size (3-20 ${\mu}m$) and pico-size (< 3 ${\mu}m$) in this study. Physical properties included water temperature, light attenuation coefficients, PAR (photosynthetically active radiation) and turbidity. Maximum chlorophyll a was observed in April, 2003 in the lower region whereas a peak of chlorophyll a developed in October, 2003 in the upper region. Large cell-sized phytoplankton (micro-size class)were dominant in the events of the chlorophyll a peaks. Potential mechanisms in the physical properties affecting the size-structured phytoplankton dynamics in the Juam Reservoir were discussed.

전남 주암호에서의 식물플랑크톤 동태를 파악하기 위해 2003년 2월부터 10월까지 식물플랑크톤생체량 (클로로필 a)의 크기별 시 ${\cdot}$ 공간적 변동과 제반 환경요인에 대해 조사하였다. 본 논문에서는 주암호와 같은 담수호에서 식물플랑크톤의 크기 구조가 계절적, 공간적으로 어떻게 변화하고 그러한 변화 속에서 물리적 요인들이 어떤 영향을 미치는지 회귀분석을 통해 파악하고자 하였다. 식물플랑크톤 (클로로필 a)은 세 그룹 즉, 대형 (micro-size > 20 ${\mu}m$), 소형 (nano-size 3-20 ${\mu}m$) 마지막으로 초소형 (pico-size, < 3 ${\mu}m$)으로 구분했다. 물리적 특성 파악을 위해 수온, 광소멸계수, PAR (photosynthetically active radiation), 수중 탁도등도 동시에 측정하였다. 최대치의 클로로필 a 는 2003년 하류지역에서는 4월에 상류지역에서는 10월에 발생하였다. 식물플랑크톤의 대번성기에는 대부분 세포크기가 큰 대형 (micro-size)식물플랑크톤이 우세하였다. 주암호의 크기별 식물플랑크톤의 변동에 영향을 미칠 수 있는 물리적 특성들에 대해 논의하였다.

Keywords

References

  1. Armstrong, R.A. 1994. Grazing limitation and nutrientlimitation in marine ecosystems: Steady statesolutions of an ecosystem model with multiplefood chains. Limnol. Oceanogr. 39:597-608.
  2. Caron, D.A. 1991. Evolving role of protozoa in aquaticnutrientcycles. In: Protozoa and their role inmarine processes (P.C. Ried, C.M. Turley andP.H. Burkill eds.). NATO ASI, Springer-VerlagBerlin Heidelberg G25:387-415 (5.3).
  3. Chisholm, S.W. 1992. Phytoplankton size. In: PrimaryProductivity and Biogeochemical cycles inthe Sea (P.G. Falkowski and A.D. Woodhead eds.).Plenum Press, New York, pp. 213-237.
  4. Gieskes, W.W. and G.W. Kraay. 1986. Floristic andphysiological differences between shallow and thedeep nanophytoplankton communities in the euphoticzone of the tropical Atlantic ocean revealedby HPLC analysis of pigments. Nature 91:567-576.
  5. Glibert, P.M., C.A. Miller, C. Garside, M.R. Romanand G.B. McManus. 1992. NH4± regeneration andgrazing: interdependent processes in size-fractionated15NH4± experiments. Mar. Ecol. Prog. Ser.82:65-74.
  6. Hein, M., M.F. Pedersen and K. Sand-Jensen. 1995.Size-dependent nitrogen uptake in micro- andmacroalgae. Mar. Ecol. Prog. Ser. 118:247-253.
  7. Iriarte, A. 1993. Size-fractionated chlorophyll abiomass and picophytoplankton cell density alonga longitudinal axis of a temperate estuary (SouthamptonWater). J. Plankton Res. 15:485-500.
  8. Iriarte, A. and D.A. Purdie. 1994. Size distribution ofchlorophyll a biomass and primary production ina temperate estuary (Southampton Water): Thecontribution of photosynthetic picoplankton. Mar.Ecol. Prog. Ser. 115:283-297.
  9. Joint, I.R. and Pomroy, A.G. 1986. Photosynthetic characteristics of nanoplankton and picoplankton from the surface mixed layer. Mar. Biol. 92:465- 474.
  10. Jonas, R. 1992. Microbial processes, organic matterand oxygen demand in the water column. In: Oxygendynamics in the Chesapeake Bay (D.E. Smith,M. Leffler and G. Mackiernan eds.). MarylandSea Grant College, College Park, pp. 113-148.
  11. Jung, J.-S. 2002. Hydraulic and hydrological surveyand water quality modeling in Lake Juam. FinalReport submitted to Youngsan-River EnvironmentResearch Laboratory, National Institute ofEnvironmental Research, Sooncheon, S. Korea.
  12. Kemp, W.M. and W.R. Boynton. 1984. Spatial andtemporal coupling of nutrient inputs to estuarineprimary production: the role of particulate transport and decomposition. Bull. Mar. Sci. 35:522-535.
  13. Kim, B., J.-H. Park, W.-M. Huh, B.-J. Lim, G.Hwang, K. Choi and J. Choi. 2001. The limnologicalsurvey of major lakes in Korea (4): Lake Juam.Korean. J. Limnol. 34(1):30-44.
  14. Kirk, J.T.O. 1994. Light and Photosynthesis in AquaticEcosystems. Cambridge University Press,Cambridge, England, pp. 75-77.
  15. Lacouture, R.V., B.B.Wagoner, E. Nealley and K.G.Seller. 1990. Dynamics of the microbial food webin the Patuxent River: Autotrophic Picoplankton.In: New perspectives in the Chesapeake System:A Research and Management Partnership (Mihursky,J.A. and Chaney, A. eds.), Chesapeake ResearchConsortium Publication, 137:297-307.
  16. Lee, H.Y. 2002. Survey on algal distributions andenvironmental factors controlling the algal bloomsin Lake Juam. Final Report submitted to Youngsan-River Environment Research Laboratory,National Institute of Environmental Research,Sooncheon, Korea.
  17. Lenz, J. 1992. Microbial loop, microbial food web andclassical food chain: Their significance in pelagicmarine ecosystems (Bjoernsen, P K. and Riemann,B. eds.). Schweizerbart’ che verlagsbuchhandlung.Stuttgart, pp. 265-279.
  18. Malone, T.C., H.W. Ducklow, E.R. Peele and S.E.Pike. 1991. Picoplankton carbon flux in ChesapeakeBay. Mar. Ecol. Prog. Ser. 78:11-22.
  19. Malone, T.C. and M.B. Chervin. 1979. The productionand fate of phytoplankton size fractions inthe plume of Hudson River, New York Bight. Limnol. Oceanogr. 24(4):683-696.
  20. Michaels, A.E. and M.W. Silver. 1988. Primary production,sinking fluxes and the microbial foodweb. Deep-Sea Res. 35:473-490.
  21. Oviatt, C., P. Lane, F. French III and P. Donaghay.1989. Phytoplankton species and abundance in responseto eutrophication in coastal marine mesocosms.J. Plankton Res. 11:1223-1244.
  22. Painting, S.J., C.L. Moloney and M.I. Lucas. 1993.Simulation and field measurements of phytoplankton-bacteria-zooplankton interactions inthe southern Benguela upwelling region. Mar.Ecol. Prog. Ser. 100:55-69.
  23. Ray, T.R., L.W. Haas and M.E. Sieracki. 1989. Autotrophicpicoplankton dynamics in a ChesapeakeBay sub-estuary. Mar. Ecol. Prog. Ser. 52:273-285.
  24. Sin, Y., R.L. Wetzel and I.C. Anderson. 2000. Seasonalvariations of size fractionated phytoplaktonalong the salinity gradient in the York River esruary,Virginia (USA). J Plankton. Res. 22: 1945-1960.
  25. Takahashi, M. and P.K. Bienfang. 1983. Size structureof phytoplankton biomass and photosynthesisin subtropical Hawaiian waters. Mar. Biol.76:203-211.
  26. Walsh, J.J. 1976. Herbivory as a factor in patterns ofnutrient utilization in the sea. Limnol. Oceanor.21:1-13.