Sorption Kinetics of Hydrophobic Organic Compounds in Wetland Soils

습지 토양에서 소수성 유기화합물질의 흡착 동력학

  • Park, Je-Chul (School of Civil and Environmental Engineering, Kumoh National Institute of Technology) ;
  • Shin, Won-Sik (School of Civil and Environmental Engineering, Kumoh National Institute of Technology)
  • 박제철 (금오공과대학교 환경공학과) ;
  • 신원식 (금오공과대학교 환경공학과)
  • Published : 2003.09.30

Abstract

Sorption kinetics of hydrophobic organic compounds (chlorobenzene and phenanthrene) in natural wetland soils was investigated using laboratory batch adsorbers. One -site mass transfer model (OSMTM) and two compartment first-order kinetic model (TCFOKM) were used to analyze sorption kinetics. Analysis of OSMTM reveals that apparent sorption equilibria were obtained within 10 to 75 hours for chlorobenzene and 2 hours for phenanthrene, respectively. For chlorobenzene, the sorption equilibrium time for surface soil was longer than that of deeper soil presumably due to physico-chemical differences between the soils. For phenanthrene, however, no difference in sorption equilibrium time was observed between the soils. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption kinetics, The fraction of fast sorption ($f_1$) and the first-order sorption rate constants for fast ($k_1$)and slow ($k_2$) compartments were determined by fitting experimental data to the TCFOKM. The results of TCFOKM analysis indicate that the sorption rate constant in the fast compartment($k_1$) was much greater than that of slow fraction($k_2$) . The fraction of the fast sorption ($f_1$) and the sorption rate constant in the fast compartment($k_1$) were increasing in the order of increasing $k_{ow}$, phenanthrene > chlorobenzene. The first-order sorption rate constants in the fast ($k_1$) and slow ($k_2$) compartments were found to vary from $10^{-0.1}\;to\;-10^{1.0}$ and from $10^{-4}\;to-10^{-2}$, respectively.

자연습지 토양에서 소수성 유기화합물(염화벤젠 및 페난쓰린)의 흡착동력학을 실험실규모의 회분식 반응기를 이용하여 조사하였다. 단일영역 물질전달모델 (one-site mass transfer model, OSMTM)과 두영역 1차속도모델 (two compartment first-order kinetic model, TCFOKM)을 사용하여 흡착속도를 분석하였다. OSMTM 분석결과 염화벤젠의 경우 10${\sim}$75시간 이내에, 페난쓰린의 경우 약 2시간 이내에 각각 겉보기 흡착평형에 도달하였다. 염화벤젠의 경우, 표면 토양에서의 흡착평형시간이 하부 토양보다 길게 나타났는데, 이는 토양 유기탄소의 물리화학적 특성의 차이에 기인한다. 그러나, 페난쓰린의 경우 각 토양간에 흡착평형시간의 차이는 없었다. 관련 모델매개변수의 수에서 기대되듯이 변수가 3개인 TCFOKM이 변수가 2개인 OSMTM보다 흡착속도를 더 잘 표현할 수 있었다. 실험결과에 대한 TCFOKM의 곡선맞춤으로부터 얻은 매개변수인 빠른 흡착영역의 분율($f_1$)과 빠른 흡착영역과 느린 흡착영역의 1차 흡착속도 상수($k_1$,및 $k_2$)를 얻을 수 있었다. TCFOKM 분석결과 빠른 흡착영역에서의 흡착속도 상수는 느린 흡착영역에서의 흡착속도 상수 보다 큰 것으로 나타났다. 빠른 흡착영역의 분율 ($f_1$)과 흡착속도상수 ($k_1$)는 $k_{ow}$ 값이 증가(페난쓰린>염화벤젠)함에 따라 증가하였다. 빠른 흡착영역과 느린 흡착영역에서의 1차 흡착 속도상수는 각각$10^{-0.1}\;-10^{+1}$$10^{-4}\;-10^{-2}$의 범위에서 변화하였다.

Keywords

References

  1. Alvord, H.H. and R.H. Kadlec. 1995. The interactionsof atrazine with wetland sorbents. Ecol. Eng. 5:469-479.
  2. Ball, W.P. and P.V. Roberts. 1991. Long-term sorptionof halogenated organic chemicals by aquifermaterial 2. Intraparticle diffusion. Environ. Sci.Technol. 25: 1237-1248.
  3. Brusseau, M.L. 1995. The effect of nonlinear sorptionon transformation of contaminants during transportin porous media. J. Contam. Hydrol. 17: 277-291.
  4. Brusseau, M.L. and P.S.C. Rao. 1989. Sorption nonidealityduring organic contaminants transport inporous media. Crit. Rev. Environ. Cont. 19: 33-99.
  5. Chen, W., A.T. Kan and M.B. Tomson. 2000. Irreversibleadsorption of chlorinated benzenes to naturalsediments: Implications for sediment qualitycriteria. Environ. Sci. Technol. 34: 385-392.
  6. Chen, W., A.T. Kan, G. Fu, L.C. Vignona and M.B.Tomson. 1999. Adsorption-desorption behaviorsof hydrophobic organic compounds in sediments ofLake Charles, Louisiana, USA. Environ. Toxicol.Chem. 18: 1610-1616.
  7. Chiou, C.T., D.E. Kile, D.E. Rutherford, G. Shengand S.A. Boyd. 2000. Sorption of selected organiccompounds from water to a peat soil and its humic-acid and humin fraction: Potential sources ofthe sorption nonlinearity. Environ. Sci. Technol.34: 1254-1258.
  8. Deitsch, J.J. and J.A. Smith. 1999. Sorption and desorptionrate comparisons for 1, 2-Dichlorobezeneto a peat soil. Environ. Toxicol. Chem. 18: 1701-1709.
  9. Deitsch, J.J., J.A. Smith, M.B. Arnold and J. Bolus.1998. Sorption and desorption rates carbon tetrachlorideand 1, 2-dichlorobenzene to three organobentonitesand a natural peat soil. Environ.Sci. Technol. 32: 3169-3177
  10. Fu, G., A.T. Kan and M. Tomson. 1994. Adsorptionand desorption hysteresis of PAHs in surface sediment.Environ. Toxicol. Chem. 13: 1559-1567.
  11. Garbarini, D.R. and L.W. Lion. 1986. Influence of thenature of soil organics on the sorption of tolueneand trichloroethylene. Environ. Sci. Technol. 20:1263-1269.
  12. Gauthier, T.M., W.R. Seltz and C.L. Grant. 1987.Effects of structural and compositional variationsof dissolved humic materials on pyrene Koc values.Environ. Sci. Technol. 21: 243-248.
  13. Grathwohl, P. 1990. Influence of organic matter fromsoils and sediments from various origins on thesorption of some chlorinated aliphatic hydrocarbons:implication of Koc correlations. Environ. Sci.Technol. 24: 1687-1693.
  14. Hatzinger, P.B. and M. Alexander. 1995. Effect ofaging of chemicals in soil on their biodegradabilityand extractability. Environ. Sci. Technol. 29:537-545.
  15. Huang, W. and W.J. Weber, Jr. 1997. A distributedreactivity model for sorption by soils and sediments.10. Relationships between desorption, hysteresis,and the chemical characteristics of organicdomains. Environ. Sci. Technol. 31: 2562-2569.
  16. Hunter, M.A., A.T. Kan and M.B. Tomson. 1996.Development of a surrogate sediment to study themechanisms responsible for adsorption/desorptionhysteresis. Environ. Sci. Technol. 30: 2278-2285.
  17. Kan, A.T., G. Fu, M.A. Hunter, W. Chen, C.H. Wardand M.B. Tomson. 1998. Irreversible sorption ofneutral hydrocarbons to sediments: Experimentalobservations and model predictions. Environ. Sci.Technol. 32: 892-902.
  18. Lyon, W.G. 1995. Swelling of peats in liquid methyl,tetramethylene and propyl sulfoxides and in liquidpropyl sulfone. Environ. Toxicol. Chem. 14:229-236.
  19. Nzengung, V.A., P. Nkedi-Kizza, R.E. Jessup andE.A. Voudrias. 1997. Organic cosolvent effects onsorption kinetics of hydrophobic organic chemicalsby organoclays. Environ. Sci. Technol. 31: 1470-1475.
  20. Opdyke, D.R. and R.C. Loehr. 1999. Determination ofchemical release rates from soil: Experimentaldesign. Environ. Sci. Technol. 33: 1193-1199.
  21. Pardue, J.H., P.H. Masscheleyn, R.D. DeLaune andW.H. Patrick, Jr. 1993. Assimilation of hydrophobicchlorinated organics in freshwater wetlands:Sorption and sediment-water exchange. Environ.Sci. Technol. 27: 875-882.
  22. Perminiva, I.V., N. Yu, G. Grechishcheva and V.S.Petrosyan. 1999. Relationship between structureand binding affinity of humic substances for polycyclicaromatic hydrocarbons: Relevance of moleculardescriptors. Environ. Sci. Technol. 33: 3781-3787.
  23. Pignatello, J.J. and B. Xing. 1996. Mechanisms ofslow sorption of organic chemicals to natural particles.Environ. Sci. Technol. 30: 1-11.
  24. Rutherford, D.W., C.T. Chiou and D.E. Kile. 1992.Influence of soil organic matter omposition on thepartition of organic compounds. Environ. Sci.Technol. 26: 336-340.
  25. White, J.C., M. Hunter, K. Nam, J.J. Pignatello andM. Alexander. 1999. Correlation between biologicaland physical availabilities of phenanthrene insoils and soil humin in aging experiments. Environ.Toxicol. Chem. 18: 1720-1727.
  26. Xing, B. and J.J. Pignatello. 1997. Dual-model sorptionof low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ.Sci. Technol. 31: 792-799.
  27. Xing, B. and J.J. Pignatello. 1998. Competitive sorptionbetween 1, 2-dichlorobenzene or 2, 4-dichlorophenoland natural aromatic acids in soil organicmatter. Environ. Sci. Technol. 32: 614-619.
  28. Young, T.M. and W.J. Weber, Jr. 1997. A distributedreactivity model for sorption by soils and sediments.7. Enthalpy and polarity effects on desorptionunder supercritical fluid conditions. Environ.Sci. Technol. 31: 1692-1696.