Embryotoxicity and Teratogenicity of Excess Zinc on Xenopus laevis

과량의 아연에 의한 아프리카 발톱개구리 (Xenopus laevis)의 배발생 이상과 독성

  • Yoon, Chun-Sik (Institute of genetic engineering, Changwon National University) ;
  • Jin, Jung-Hyo (Dept. of Biology, College of Natural Sciences, Changwon National University) ;
  • Cheong, Seon-Woo (Dept. of Biology, College of Natural Sciences, Changwon National University)
  • 윤춘식 (창원대학교 유전공학연구소) ;
  • 진정효 (창원대학교 자연과학대학 생물학과) ;
  • 정선우 (창원대학교 자연과학대학 생물학과)
  • Published : 2003.03.31

Abstract

Concentrated releases of zinc into water usually results from discharges associated with industrial purpose. The released zinc into soil is corroded and released into water. In aquatic environment, exess zinc is toxic to the organisms and causes the growth inhibition and malformation of them as a heavy metal. In this study, excess zinc toxicity was tested by FETAX (frog embryo teratogenetic assay with Xenopus)as in vivo system. Xenopus embryos at st.9 were exposed to $100{\sim}900\;{\mu}M$ of zinc for 7 days and 81% of individuals were survived in 100 ${\mu}M$, and 25% were survived in 1000M of zinc solution. In external malformations, swelled belly and intestinal dysplasia were common, and all of tested individuals showed these malformations in 200 ${\mu}M$ or higher concentration of zinc. In 400 ${\mu}M$ or higher concentration, all of tested tadpoles showed faded heart. Also, hypo-pigmentation, lens hernia and loose digestive track were very frequently found in 100 ${\mu}M$ of zinc. The histological study with paraffin section of zinc treated tadpoles showed following abnormalities; regeneration of photoreceptor on retina, reduced vitreous chamber in eye, reduction of red blood cells in heart, abnormal liver, swelling of pronephric cell, muscle dysplasia and palatal papilloma. These abnormalities may be caused by the degeneration of mitochondria, inhibition of cell adhesion, and the formation of leghemoglobin by zinc due to the substitution of $Ca^{2+}$ by $Zn^{2+}$. The body length was reduced due to the excess zinc. From a statistical result, body lengths of 300 ${\mu}M$ or higher concentrative g개ups was significantly reduced comparing that of control group. Recently, many spontaneous malformations and reduction of amphibians are reported, From the results of present study, excess zinc mi호t be a factor of amphibian reduction, and the control of zinc discharges is very important.

공업적 목적으로 사용된 후의 아연은 육지와 수계로 유입되며, 토양으로 유입된 후의 아연은 부식되어 수계로 유입된다. 과량의 아연은, 수서생물에 대해 중금속으로서 독성을 가지며 수서 동 ${\cdot}$ 식물의 성장억제를 유발하고, 나아가서는 동물의 기형발생을 초래한다. 본 연구에서는 FETAX (frog embryo teratogenetic assay with Xenopus) 방법에 의해 in vivo에서 과량 아연의 독성을 밝혔다. st. 9 시기에 있는 Xenopus 개구리의 배를 $100{\sim}900\;{\mu}M$ $ZnCl_2$용액에 7일간 노출시켰을 때 100 ${\mu}M$ 아연에서는 81%의 개체가 생존하였고 1000 ${\mu}M$ 에서는 25%가 생존하였다. 그 결과 외형적 이상은 복부팽만과 소화관 형성부전이 일반적으로 나타났고 200 ${\mu}M$ 이상의 아연처리 시 모든 개체에서 이러한 현상이 나타났다. 400 ${\mu}M$ 이상의 농도에서는 모든 개체에서 심장탈색을 보였다. 또한 신체의 탈색과 눈의 수정체 헤르니아, 그리고 느슨한 소화관은 100 ${\mu}M$ 이상의 아연처리에서 매우 빈번히 나타났다. 아연처리 된 유생의 파라핀 조직절편에서는 망막의 광수용기의 파괴, 눈의 초자체방 축소, 심장적혈구수의 감소, 비정상적 간조직, 원신관 세포의 팽윤, 근육형성부전, 그리고 구전정의 유두종 형성 등의 이상을 보였다. 이러한 이장은 미토콘드리아의 파괴 $Ca^{2+}$$Zn^{2+}$의 치환에 의한 세포결합의 저해, 그리고 아연에 의한 적혈구내 leghemoglobin의 형성 등이 원인일 것이다. 과량 아연에 의해 유생의 체장은 감소하였고, 통계분석 결과 체장은 대조군의 체장과 비교했을 때, 300 ${\mu}M$ 아연처리 군부터 매우 유의미하게 체장의 감소가 나타났다. 현재 자연상태에서 양서류의 수적감소와 기형발생이 세계적으로 보고되고 있으며, 본 연구의 결과로 고려했을 때, 과잉 아연은 수계를 오염시켜 양서류의 수적감소를 일으키는 중요한 원인물질로 생각되므로 이의 관리에 관심을 두어야 할 것이다.

Keywords

References

  1. Bull. Environ. Contam. Toxicol. v.70 Removal of zinc and floride from industrial waste water plants around Cairo Abdel-Halim, S.H.;A.M.A. Shehata;M.F. El-Shahat
  2. Clinical Toxicology v.37 no.2 Zinc Barceloux, D.G.
  3. Physiological Reviews v.73 The biochemical basis of zinc physiology Bert, L.;H. Vallee;K.H. Falchuk
  4. Residue Rev. v.91 The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems Biddinger, G.R.;S.P. Gloss
  5. Gastroenterology v.73 Acrodermatitis enteropathica, zinc, and the paneth cell. A case report with family studies Bohane, T.D.;E. Cutz;J.R. Hamilton;D.G. Gall
  6. Sb. Lek. v.95 Zink in pigmented cells and structures, interactions and possible roles Borovansky, J.
  7. Nephrol. dial. Transplant. v.12 Percentage of hypochromic red blood cells as predictor of erythropoietic and iron response after i.v. iron supplementation in maintenance haemodialysis patients Braun, J.;K. Lindner;M. Schreiber;R.A. Heidler;W.H. Horl
  8. J. Inorg. Biochem. v.28 IH NMR studies of heme pocket conformation in zinc-substituted leghemoglobin, a diamagnetic analog of deoxyleghemoglobin Dalvit, C.;L. Tennant;P.E. Wright
  9. Neurobiol. Dis. v.7 Astrocytes are more resistant than neuros to the cytotoxic effects of increased [Zn(2+)] (i) Dineley, K.E.;J.M. Scanlon;G.J. Kress;A.K. Stout;I.J. Reynolds
  10. Biochemistry v.19 Zinc uptake and distribution Xenopus laevis oocytes and embryos Falchuk, K.H.;M. Montorzi;B.L. Vallee
  11. J. Pediatr. Gastroenterol. Nutr. v.27 Elevated intakes of zinc in infant formulas do not interfere with iron absorption on premature infants Friel, J.K.;R.E. Serfass;P.V. Fennessey;L.V. Miller;W.L. Andrews;B.S. Simmons;G.F. Downton;P.G. Kwa
  12. J. Environ. Qual. v.18 Heavy metal accumulation in small mammals following sewage sluge application to forests Hegstrom, L.J.;S.D. West
  13. Chemosphere v.47 no.10 Bioavailability of zinc in runoff water from roofing materials Heijerick, D.G.;C.R. Janssen;C. Karlen;I.O. Wallinder;C. Leygraf
  14. Acta. Histochem. v.89 Histochemical localization of zinc and copper in rat ocular tissues Hirayama, Y.
  15. Toxicology v.133 Inhibition of human erythrocyte $Ca^{2+}$ -ATPase by $Zn^{2+}$ Hogstrand, C.;P.M. Verbost;S.E. Wendelaar Bonga
  16. Aquat. Toxicol. v.61 no.1-2 Nutrient-toxicant interactions in natural and constructed phytoplankton communities: results of experiments in semi-continuous and batch culture Interlandi, S.J.
  17. Ann. Otol. Rhinol. Laryngol. v.108 Localization of zinc in the rat submandibular gland the effect of its deficiency on salivary secretion Ishi, K.;M. Sato;M. Akita;H. Tomita
  18. J. Nutr. v.126 Metallothionein Ⅰand Ⅱ protect against zinc deficiency and zinc toxicity in mice Kelly, E.J.;C.J. Quaife;G.J. Froelick;R.D. Palmiter
  19. Chemoshere v.41 Tissue, sex and age specific accumulation of heavy metals(Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area Komarnicki, G.J.
  20. Clin. Chem. v.45 Zinc protoporphyrin : A metabolite with a mission Labbe, R.F.;H.J. Vreman;D.K. Stevenson
  21. J. Environ. Qual. v.18 Heavy metal concentrations during ten years of sludge treatment to an old-field community Levine, M.B.;A.T. Hall;G.W. Barrett;D.H. Tayler
  22. Ann. Clin. Lap. v.23 Embryotoxicity and teratogenicity of $Cu^{2+}$ and $Zn^{2+}$ for Xenopus laevis, assayed by the FETAX procedure Luo, S.Q.;M.C. Plowman;S.M. Hopfer;F.W.Jr. Sunderman
  23. Eur. J. Biochem. v.214 Sequential assignment of proton resonances in the NMR spectum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket Martineau, L.;C.T. Craescu
  24. External and internal stage criteria in the development Xenopus laevis Nomal table of Xenopus laevis Nieukoop, P.D.;J. Faber
  25. Mol. Reprod. Dev. v.36 Zinc, iron, and copper contents of Xenopus laevis oocytes and embryos Nomizu, T.;K.H. Falchuk;B.L. Vallee
  26. Ecotoxicol Environ. Saf. v.52 no.3 Heavy Metal(Pb, Zn, Cd, Fe, and Cu) Contents of Plant Foliage near the Anvil Range Lead/Zinc Mine, Faro, Yukon Territory Pugh, R.;D. Dick;A. Fredeen
  27. Biol. Trace. Elem. Res. v.23 Zinc, iron, vitamin E and erythrocyte stability in the rat Record, I.R.;S.E. MacQueen;I.E. Dreosti
  28. Ecotoxicol. Environ. Saf. v.52 no.3 Heavy metals in aquatic bryophytesfrom the Ore mountains (Germany) Samecka-Cymerman, A.;K.K. Kempers
  29. Exp. Eye Res. v.56 X-ray microanalysis of ocular melanin in pigs maintained on normal and low zinc diets Samuelson, D.A.;D. Smith;R.J. Ulshafer;D.G. Hendricks;R.D. Whitley;H. Hendricks;N.C. Leone
  30. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. v.133 no.4 Inhibition of carbonic anhydrase in the gills of two euryhaline crabs, allinectes sapidus and Carcinus maenas, by heavy metals Skaggs, H.S.;R.P. Henry
  31. Brain Res. v.852 Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains Suh, S.W.;K.B. Jensen;M.S. Jenden;D.S. Silva;P.J. Kesslak;G. Danscher;C.J. Frederickson
  32. Mol. Reprod. Dev. v.42 Xenopus lipovitellin I is Zn (2+)- and Cd (2+)-binding protein Sunderman, F.W.Jr.;K. Antonijczuk;A. Antonijczuk;S. Grbac-Ivankovin;A.H. Varghese;G. Korza;J. Ozols
  33. Lab. Anim. v.34 Determination of major and trace elements in the liver of Wistar rats by inductively coupled plasma-atomic emission spectrometry and mass spectrometry Takahashi, S.;I. Takahashi;H. Sato;Y. Kubota;S. Yoshida;Y. Muramatsu
  34. Exp. Eye Res. v.38 Tapetum lucidum in the pigmented and albino ferret Tjalve, H.;A. Frank
  35. J. Leukoc. Biol. v.64 The significance of zinc for leukocyte biology Wellinghausen, N.;L. Rink
  36. Environ. Toxicol. Chem. v.21 no.9 Acute and chronic toxicology of zinc to mottled sculpin Cottus bairdi Woodling, J.;S. Brinkman;S. Albeke