DOI QR코드

DOI QR Code

비정렬 격자계를 이용한 희박기체 영역의 3차원 병렬 직접모사법 개발

Development of a 3-D Parallel DSMC Method for Rarefied Gas Flows Using Unstructured Meshes

  • 발행 : 2003.03.01

초록

본 연구에서는 비정렬 격자를 이용한 병렬화된 3차원 직접모사법을 개발하였다. 모사 입자의 추적에는 선형 형상 함수를 3차원으로 확장하여 적용하였다. 프로그램에서는 효율적인 병렬계산을 위하여 모사 입자의 수에 기초한 영역 재분할 방식을 이용하여 프로세서간의 작업 균형을 유지하였다. 밀도 차가 큰 두 개 이상의 유동이 동시에 존재할 경우를 효과적으로 모사하기 위해서 입자에 가중치를 적용하는 기법을 도입하였다. 프로그램의 검증을 위해서 3차원 삼각 날개 유동을 해석하여 실험치나 다른 계산 결과와 비교하였다. 또한 고도 100km의 희박한 환경헤서 우주발사체 탑재부 주의 유동을 해석하여 노즐 전방으로 고온의 풀룸이 역류하여 비행체 표면에 영향을 미칠 수 있는 가능성을 타진하였다.

In the present study, a 3-D Parallel DSMC method in developed on unstructured meshes for the efficient simulation of rarefied gas flows. Particle tracing between cells in achieved based on a linear shape function extended to three dimensions. For high parallel efficiency, successive domain decomposition is applied to achieve load balancing between processors by accounting for the number of particles. A particle weighting technique is also adopted to handle flows containing gases of significantly dirrerent number densities in the same flow domain. Application is made for flow past a 3-D delta wing and the result is compared with that from experiment and other calculation. Flow around a rocket payload at 100km altitude is also solved and the effect of plume back flow from the nozzle in studied.

키워드

참고문헌

  1. Bird, G. A , Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.
  2. Boyd, I. D., "Vectorization of a Monte Carlo Simulation Scheme for Nonequilibrium Gas Dynamics," Journal of Computational Physics, Vol. 96, 1991, pp. 411-427. https://doi.org/10.1016/0021-9991(91)90243-E
  3. Korolev, M. Y, Marov, Y., and Skorov, M. A , "An Implementation of Monte Carlo weighting method on multiprocessor systems," Reports on Computer Science and Mathematics, Abo Akademay, Ser. A, No. 125, 1991.
  4. Masahiro, O. and Tetsuya, T., "On the Parallel Processing of Direct Simulation Monte Carlo Method," Proceeding of the 8th NAL Symposium on Aircraft Computational Aerodynamics, 1990, pp. 39-44.
  5. Bogdanov, A V., Bykov, N. Y., Grishin, I. A., Khanlarov, G. O., Lukianov, G. A , and Zakharov, V. V., "Algorithms of Two-Level Parallelization for Direct Simulation Monte Carlo of Unsteady Flows in Molecular Gasdynamics," Proceedings of the 7th International Conference on High Performance Computing and Networking Europe, Amsterdam, Netherlands, Apr. 1999.
  6. Wilmoth, R. G., "Direct Simulation Monte Carlo Analysis on Parallel Processors," AIAA paper 89-1666, 1989.
  7. Wilmoth, R. G., "Application of a Parallel Direct Simulation Monte Carlo Method to Hypersonic Rarefied Flows," AIAA Journal, Vol. 30, No. 10, 1992, pp. 2447-2452. https://doi.org/10.2514/3.11246
  8. Nance, R. P., Wilmoth, R. G., Moon, B., Hassan, H. A., and Saltz, J., "Parallel Monte Carlo Simulation of Three-Dimensional Flow Over a Flat Plate," Jouranal of Thermophysics and Heat Transfer, Vol. 9, No.3, 1995, pp. 471-477. https://doi.org/10.2514/3.689
  9. Robinson, C. D. and Harvey, J. K., "Dynamic Load Balancing Applied to a Direct Simulation Monte Carlo Implementation," Proceedings of 5th International Parallel Computing Workshop, Kawasaki , Japan, 1996.
  10. McDonald, J. D., "Particle Simulation in a Multiprocessor Environment," AIAA Paper 91-1366, 1991.
  11. Oh, C. K. and Sinkovits, R. S., "Parallelization of Direct Simulation Monte Carlo Method Combined With Monotonic Lagrangian Grid," AIAA Journal, Vol. 34, No. 7, 1996, pp. 1363-1370. https://doi.org/10.2514/3.13241
  12. LeBeau, G. J., "A Parallel Implementation of the Direct Simulation Monte Carlo Method," Computational Methods of Applied Mechanical Engineering, Vol. 174, 1999, pp. 319-337. https://doi.org/10.1016/S0045-7825(98)00302-8
  13. 김민규, 권오준, 윤성준, "비정렬 격자를 사용한 축대칭 직접모사법의 개발", 한국항공우주학회지, 제29권, 제4호, 2001, pp.20-28.
  14. CelenligiI, M. C. and Moss, J. N., "Hypersonic Rarefied Flow About a Delta Wing-Direct Simulation and Comparison With Experiment," AIAA Journal, Vol. 30, No.8, 1992, pp. 2017-2023. https://doi.org/10.2514/3.11174