Abstract
Sequences of industrial microbial counts of foods shows irregular fluctuating patterns as adeinition of fluctuating microbial counts(FMC). Recently, it beame clear that the FMC was considered as having a lognormal distribution as a first order approximation. Application of lognormal distribution to the industrial microbial counts could produce useful information in practice. This study is intended to verift the application method of lognormal idstribution in FMC. The one year's records for microbial counts of frozen dumplings from two companies were obtained, and the statistical analysis was carried out to estimate the frequencies of future events where counts exceeding selected levels and to compare the sanitation level of the two companies. The results showed that this spplication method enable translation of irregular recourds of microbial counts into an useful information such as te actual probalities of outburst of a given level and the quantitative predictions of potential hazards in the processing.
식품산업체에서 검사한 자료의 일반세균수는 대부분 불규칙 분포를 나타낸다. 최근 이러한 불규칙적인 경향에 대하여 미생물수의 lognormal 분포 특성을 이용하는 확률분포 모델을 적용함으로써 좀더 정확한 변화의 특성을 밝히고 있다. 확률분포 모델을 이요하면 일반세균수와 대장균군 등의 분석결과에 대해 과거의 단순한 경향분석을 벗어나, 유용한 분석이 가능한 것으로 나타나고 있다. 본 여구는 냉동만두류를 생성하는 2개 업체의 각각 1년 동안 실험된 일반세균 자료를 갖고, 확률분포 모델 활용의 타당성과 업체간의 위생수준 상호비교 그리고 예상되는 위해발생 예측에 적용 검토하였다. 그 결과 정량적인 미생물 자료에 대한 확률분포 모델의 적용은 식품산업체에서 일반세균수에 의한 위해발생 가능성을 예측하고 안전관리 수준을 결정하는데 유용한 것으로 판단된다.