Optimization of the Concentrations of ERIC-PCR Components to Simultaneously Differentiate Five Foodborne Pathogenic Bacterial Genera

식중독세균 5속의 동시 동정을 위한 ERIC-PCR 반응성분 농도의 최적화

  • Seo, Hyun-Ah (Department of Food Science and Technology, College of Industrial Sciences) ;
  • Park, Sung-Hee (Department of Food Science and Technology, College of Industrial Sciences) ;
  • Kim, Keun-Sung (Department of Food Science and Technology, College of Industrial Sciences)
  • 서현아 (중앙대학교 산업과학대학 식품공학과) ;
  • 박성희 (중앙대학교 산업과학대학 식품공학과) ;
  • 김근성 (중앙대학교 산업과학대학 식품공학과)
  • Published : 2003.12.01

Abstract

The five different foodborne pathogenic bacterial genera of Escherichi, Salmonella, Shigella, Vibrio and Listeria are important sources of foodpoison. However, the method was not developed to simultaneously differentiate these five bacteria at molecular level. The optimized concentrations of the four major PCR cocktail components of $MgCl_2$, dNTPs, primers and template DNA were determined when ERIC (enterobacterial repetitive intergenic consensus)-PCR reactions were carried out to differentiate the five differnet foodborne pathogenic bacteria. The optimized concentration of $MgCl_2$ was determined to be 2 mM in order to obtain a consistent fingerprinitng pattern. The similar fingerprinting pattern was obtained when ERIC primers and dNTPs were added up to the concentrations of 2 ${\mu}M$ and 200 ${\mu}M$, respectively. As for template DNA, the numbers of PCR fragments were not affected, but their intensities were increased as the concentrations of the DNA were increased.

본 연구는 식품을 오염시켜 식중독을 유발하는 주요 식중독 세균인 Escherichi, Salmonella, Shigella, Vibrio, Listeria등 5속의 병원성 세균들을 반복성 염기서열을 이용한 ERIC-PCR을 이용하여 동시에 동정할 때 이용되는 주요 PCR 반응성분인 $MgCl_2$, dNTPs, primers, template DNA의 최적 농도를 결정하였다. ,$MgCl_2$ 반응성분은 2 mM을 적용하였을 때부터 일정한 fingerprinting pattern을 얻을 수 있었으므로 2 mM을 $MgCl_2$의 최적농도로 결정하였다. dNTPs의 농도는 250 ${\mu}M$까지 증가함에 따라 6균주 모두 200 ${\mu}M$까지는 농도 증가와 비례하여 단편의 수와 강도가 점증하였으나 그 이상의 농도에서는 단편의 수와 강도가 일정하였다. 그러므로 일정한 ,fingerprinting pattern 을 얻기 위하여 200 ${\mu}M$의 dNTPs만으로도 충분하였다. ERIC primer들은 2 ${\mu}M$의 농도를 적용했을 때부터 일정한 fingerprinting pattern을 나타낼 수 있었으며, 그 이상의 농도를 적용했을 때 단지 단편들의 강도만이 증가하였다. Template DNA도 다른 PCR 반응성분에 대한 실험과 마찬가지로 적용한 DNA 양의 증가에 따라 단편의 간도가 증가하였다. 그러나 대부분의 적용 균주들에 대하여 DNA의 양이 최고일 때와 최대일 때 각각의 얻어지 fingerprinting pattern들을 비교할 때 단편의 수는 별 차이가 없었다.

Keywords

References

  1. Rajashekara, G., Haverly, E., Halvorson, D.A., Ferris, K.E., Lauer, D.C. and Nagaraja, K.V.: Multidrug-resistant Salmonella typhimurium DTl04 in poultry. J. Food Protect., 63, 155-161 (2000) https://doi.org/10.4315/0362-028X-63.2.155
  2. Johnson, J.R. and Clabots, C.: Improved repetitive-element PCR fingerprinting of Salmonella enterica with the use of extremely elevated annealing temperatures. Clin. Diag. Lab. Immun., 7, 258-264 (2000)
  3. Dombek, P.E., Johnson, L.K., Zimmerley, S.T. and Sadowsky, M.J.: Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol., 66, 2572-2577 (2000) https://doi.org/10.1128/AEM.66.6.2572-2577.2000
  4. Johnson, J.R. and O'Bryan, T.T.: Improved repetitive-element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli. Clin. Diag. Lab. lmmun., 7, 265-273 (2000)
  5. Dalla-Costa, L.M., Irino, K., Rodrigues, J., Rivera, l.N.G. and Trabulsi, L.R.: Characterization of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. J. Med. Microbiol., 47, 227-234 (1998) https://doi.org/10.1099/00222615-47-3-227
  6. Liu, P.Y.F., Lau, Y.J., Hu, B.S., Shyr, J.M., Shi, Z.Y., Tsai, W.S., Lin, Y.H. and Tseng, C.Y.: Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J. Clin. Microbiol., 33, 1779-1783 (1995)
  7. Navia, M.M., Capitano, L., Ruiz, J., Vargas, M., Urassa, H., Schellemberg, D., Gascon, J., and Vila, J.: Typing and characterization of mechanisms of resistance of Shigella spp. isolated from feces of children under 5 years of age from Ifakara, Tanzania. J. Clin. Microbiol., 37, 3113-3117 (1999)
  8. Wieser, M. and Buess, H.J.: Rapid identification of Staphylococcus epidermidis. Int. J. Sys. Evol. Microbiol., 50, 1087-1093 (2000) https://doi.org/10.1099/00207713-50-3-1087
  9. Jersek, B., Gilot, P., Gubina, M., Klun, N., Mehle, J., Tcherneva, E., Rijpens, N. and Herman, L.: Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. J. Clin. Microbiol., 37, 103-109 (1999)
  10. Clark, C.G., Kravetz, A.N., Dendy, C., Wang, G., Tyler, K.D. and Johnson, W.M.: Investigation of the 1994-5 Ukrainian Vibrio cholerae epidemic using molecular methods. Epidemiol. Infect., 121, 15-29 (1998) https://doi.org/10.1017/S0950268898008814
  11. Hulton, C.S.J., Higgins, C.F. and Sharp, P.M.: ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol., 5. 825-834 (1991) https://doi.org/10.1111/j.1365-2958.1991.tb00755.x
  12. Higgins, C.F., Ames, G.F.L., Barnes, W.M., Clement, J.M. and Hofnung, M.: A novel intercistronic regulatory element of prokaryotic operons. Nature. 298: 760-762 (1982) https://doi.org/10.1038/298760a0
  13. Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., Hakenbeck, R., Morrison, D.A., Boulnois, G.J. and Claverys, J.-P.: A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res., 20, 3479-3483 (1992) https://doi.org/10.1093/nar/20.13.3479
  14. Lupski, J.R. and Weinstock, G.M.: Short, interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol., 174, 4525-4529 (1992) https://doi.org/10.1128/jb.174.14.4525-4529.1992
  15. Rivera, I.G., Chowdhury, M.A.R., Huq, A, Jacobs, D., Martins, M.T. and Colwell, R.: Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139, and non-O1 strains. Appl. Environ. Microbiol., 61, 2898-2904 (1995)
  16. de Bruijn, F.J.: Use of repetitive (repetitive extragenic element and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol., 58, 2180-2187 (1992)
  17. Sambrook, J., Fritsch, E.F. and Maniatis, T.: Molecular cloning; A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press. USA., 14.15-14.17 (1989)
  18. Versalovic, J., Koeuth, T. and Lupski, J.R.: Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res., 19, 6823-6831 (1991) https://doi.org/10.1093/nar/19.24.6823
  19. Versalovic, J., Schneider, M., de Bruijn, F.J. and Lupski, J.R.: Genomic fingerprinting of bacteria using repetitive sequencebased polymerase chain reaction. Methods Mol. Cell. Biol., 5, 25-40 (1994)
  20. de la Puente-Redondo, V.A, del Blanco, N.G., GutierrezMartin, C.B., Garcia-Pena, F.J. and Rodriguez-Ferri, E.F.: Comparison of different PCR Approaches for typing of Francisella tularensis strains. J. Clin. Microbiol., 38, 1016-1022 (2000)
  21. Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds.): PCR Protocols. A Guide to Methods and Applications. Academic Press, Inc., San Diego, California, USA., 4-11 (1992)
  22. Erlich, H.A. (ed.).: PCR Technology. Principles and Applications for DNA Amplification.. Oxford University Press Inc., New York, New York, USA, 7-16. (1992)
  23. Lin, A.W., Usera, A., Barrett, T.J. and Goldsby, R.A.: Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis. J. Clin. Microbiol., 34, 870-876 (1996)