염산용액에서 Bromley식을 이용한 염화니켈의 이온평형해석

Ionic Equilibria Analysis of $NiCl_2$ in Chloride Solutions by Using Bromley Equation

  • 이만승 (목포대학교 신소재공학과) ;
  • 이광섭 (목포대학교 신소재공학과)
  • 발행 : 2003.06.01

초록

화학평형, 물질수지 및 전기적 중성식을 고려하고 Bromley식으로 용질들의 활동도계수를 구하여 염산용액에서 염화니켈의 이온평형을 해석하였다. 본 연구에서 고려한 조성범위에서 니켈을 함유한 화학종의 대부분은 $Ni^{2+}$$NiCl^{+}$ 로 존재하고 니켈수산화물의 농도분율은 매우 낮으나, 용액의 pH가 증가함에 따라 $Ni_4$ $(OH)_{4}^{4+}$ 의 농도분율은 급격히 증가하였다. $NiCl_2$ $-HCl-NaOH-H_2$O 계에 대해 전해질의 농도를 변화시키며 $25^{\circ}C$에서 측정한 pH값과 계산값은 이온강도 9.4m정도의 범위까지 서로 잘 일치하였다.

ionic equilbria of nickel chloride in hydrochloric acid solutions were analyzed by considering chemical equilibria, mass and charge balance equations. The activity coefficients of solutes were calculated by using Bromley equation. It was found that most of species containing nickel existed as $Ni^{2+}$$NiCl^{+}$. The mole fractions of nickel hydroxides were very low in the con-centration ranges considered in this study and the mole fraction of$Ni_4$ $(OH)_{4}^{4+}$ increased greatly with the pH of the solution. The pH values of $NiCl_2$ $-HCl-NaOH-H_2$O system at $25^{\circ}C$ calculated in this study agreed well with those experimentally measured up to ionic strength of 9.4m.

키워드

참고문헌

  1. Njau, K. N., Woude, M. vd., Visser, G. J., and Janssen, L. J. J., 2000: Electrochemical removal of nickel ions from industrial wastewater, Chemical Engineering Journal, 79, 187-195 https://doi.org/10.1016/S1385-8947(00)00210-2
  2. Baticle, P. Kiefer, C., Lakhchaf, N., Leclerc, O., Persin, M., and Sarrazin, J., 2000: Treatment of nickel containing industrial effluents with a hybrid process comprising of polymer complexation-ultrafiltration-etectrolysis, Separation and Purification Technology, 18, 195-207 https://doi.org/10.1016/S1383-5866(99)00063-5
  3. Jacek, W., and Grazyna, W., 1999: Water and acid recovery from the rinse after metal etching operations, Hydrometallurgy, 53, 105-119 https://doi.org/10.1016/S0304-386X(99)00020-1
  4. Juang, R. S., and Jiang, J. D., 1995: Recovery of nickel from a simulated electroplating rinse solution by solvent extraction and liquid surfactant membrane, Journal of Membrane Science, 100, 163-170 https://doi.org/10.1016/0376-7388(94)00269-5
  5. Groves, R. D., and Redden, L. D.. 1990: Nickel extraction from acidic chloride solutions with Aliphatic oximes, Hydrometallurgy, 24, 271-290 https://doi.org/10.1016/0304-386X(90)90094-I
  6. Cui, C. Q., and Lee, J. Y., 1995: Nickel deposition from unbuffered neutral chloride solutions in the presence of oxygen, Electrochimica Acta, 40(11), 1653-1662 https://doi.org/10.1016/0013-4686(95)00093-T
  7. Bromley, L. A., 1973: Thermodynamic properties of strong electrolytes in aqueous solutions, AIChE Journal, 19(2), 313-320 https://doi.org/10.1002/aic.690190216
  8. Smith, R. M., and Martell, A. E.. 1982: Critical Stability Constants, 1982: Inorganic complexes, Plenum Press, 4, 1-6
  9. Hogfeldt, E., 1982: Stabitity Constants of Metal-Ion Complexes, Part A: Inorganic Ligands, Pergamon Press, 212
  10. Lee, M. S., Park, H. J., and Na, C. K., 2002: Ionic equilibria in $ZnSO_4-Na_2SO_4-H_2SO_4-NaOH-H_2O$ system, J. of Korean Inst. of Resources Recycling, 11(1), 19-25
  11. Zemaitis, J. F., Clark, Jr. D.M., Rafal, M., and Scrivner, N. C., 1986: Handbook of aqueous electrolyte thermodynamics, Design Institute for Physical Property Data, 447-449
  12. Pitzer, K. S., and Mayorga, G., 1973: Thermodynamics of Electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. of Physical Chemistry, 77(19), 2300-2308 https://doi.org/10.1021/j100638a009
  13. Zemaitis, J. F., Clark, Jr. D. M., Rafal, M., and Scrivner, N. C., 1986: Handbook of aqueous electrolyte thermodynamics, Design Institute for Physical Property Data, 100-101