DOI QR코드

DOI QR Code

Design of Boundary Confinement of Structural Walls

구조벽의 단부 횡보강 설계

  • Published : 2003.12.01

Abstract

For a performance-based design of structural walls, it is necessary to develop a rational design method for determining the length and detail of boundary confinement so as to satisfy the given ductility demand. In the present study, the curvature capacity of a structural wall with boundary confinement was estimated considering the effects of various design parameters. The curvature demand of the plastic hinge corresponding to the given design displacement was also determined. By equalizing the curvature capacity to the demand, a design method for determining the length of boundary confinement, was developed. According to the design method, the length of boundary confinement increases as axial compressive load and design displacement increase, and as concrete strength, wall thickness, amount of lateral reinforcement and aspect ratio decrease. A study was performed on details for effective lateral confinement of walls with rectangular cross-section. Based on the findings, design guidelines on spacings of ties and cross-ties were proposed.

구조벽의 성능에 기초한 내진설계를 위해서는 변형요구량을 만족시킬 수 있도록 구조벽의 횡보강 길이 및 보강상세를 결정하는 합리적인 설계 방법이 필요하다. 이를 위하여, 다양한 설계변수를 고려하여 단부 횡보강된 구조벽의 최대곡률성능을 정의하였고 벽체의 형상, 설계변위에 따른 곡률요구량을 정의하였다. 벽체의 곡률성능과 요구량을 등가로 하여 벽체 단부의 횡보강길이를 산정할 수 있는 방법을 제안하였다. 본 방법에 의하면 단부횡보강길이는 압축력과 설계변위가 증가하면 늘어나고 콘크리트 강도, 벽체두께, 횡보강효과, 형상비가 커지면 줄어든다. 또한 효율적인 단부 횡보강 효과와 시공성을 확보하기 위해서 단부 횡보강상세에 대한 연구를 수행하였으며 이 연구결과를 근거로 효율적인 횡보강근의 배치간격에 대한 합리적인 지침을 제안하였다.

Keywords

References

  1. 건설교통부, '건축물하중기준,'1996
  2. 건설교통부, '건축물하중기준,' 2000
  3. 한국콘크리트학회, '콘크리트구조설계기준,' 2000
  4. American Concrete Institute, 'Building Code Requiremerits for Structural Concrete,' ACI 318-95, 1995, Special Provision for Seismic Design 21.6
  5. 강수민, 박홍근, '장방형 콘크리트 구조벽의 연성 보강,' 콘크리트학회논문집, 14권 4호, 2002, pp.530~539
  6. American Concrete Institute, 'Building Code Requirements for Structural Concrete,' ACI 318-99,1999, Special Provision for Seismic Design 21.6
  7. Paulay, T. and Priestley, M. J. N., 'Seismic Designof Reinforced Concrete and Masonry Buitdings,'Wiley Interscience, New York, 1992, pp.362-423
  8. Wallace, J. W., 'Seismic Design of RC structuralWalls. Part I: New Code Format,' J. Struct. Engr.,ASCE, Vol.121, No.1, 1995, pp.75-87 https://doi.org/10.1061/(ASCE)0733-9445(1995)121:1(75)
  9. 강수민, 박홍근, '단부 횡보강된 구조벽의 모멘트-곡률관계,' 콘크리트학회논문집, 15권 2호, 2003, pp.323-334
  10. Building Seismic Safety Council, 'NEHRP Guidelinesfor the Seismic Rehabilitation of Buildings' 1997
  11. Chang, G. A. and Mander, J. B., 'Seismic Energy'Base Fatigue Damage Analysis of Bridge Columns,Part I : EvaIuation of Seismc Capacity," TechnicalReport NCEER-94-006, Buffalo, New York, 1994
  12. Wallace, J. W. and Orakcal, K, 'ACI 318-99 Provisions for Seismic Design of Structural Walls,' ACIStructural Joumal, ACI, Vol.99 No.4, 2002, pp.499-508
  13. Priestley, M. J. N., "Performance Based SeismicDesign,' 12th Wcrld Conference on EarthquakeEngineering(WCEE), 2000, Paper No.2831
  14. Thomsen IV, J. H. and Wallace, J. W., 'Disptacement Based Design of RC Structural WalI : AnExperimental Investigation of WalIs With Rectan-gular And T-Shaped Cross Sectcns,' TechnicalReport NSF-BCS-9112962, Clarkson University,1995, pp.314-353
  15. American Concrete Institute, 'Building Code Requirements for Stmctural Concrete,' ACI 318-02, 2002,Special Provision for Seisirdc Design 21.7
  16. Sakai, K. and Sheikh, S. A, 'What Do We Knowabout Reinforced Concrete Columns : A CnticalReview of Previous Work and Code Provisions,'ACI Structural JournaI, ACI, Vol.86, No.2, 1989,pp.192-205
  17. Wood, S. L., 'Minimum Tensile ReinforcementRequirements in Walls,' ACI StructuraI Journal,Vol.86, No.4, 1989, pp.582-591
  18. Mander, J. B., Pnestley, M J. N., and Park, R,'Theoretical Stress-Strain Model For ConfinedConcrete,' J. Struct. Engrg., ASCE, Vol.114, No.8,1988, pp.1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)