DOI QR코드

DOI QR Code

Prediction of Time to Corrosion for Concrete Bridge Decks Exposed to De-Icing Chemicals

제빙화학제 살포로 인한 콘크리트 교량 바닥판의 철근부식 시작시기의 예측

  • Lee, Chang-Soo (Department of Civil Engineering, The University of Seoul) ;
  • Yoon, In-Seok (Department of Civil Engineering, The University of Seoul) ;
  • Park, Jong-Hyok (Department of Civil Engineering, The University of Seoul)
  • 이창수 (서울시립대학교 토목공학과) ;
  • 윤인석 (서울시립대학교 토목공학과) ;
  • 박종혁 (서울시립대학교 토목공학과)
  • Published : 2003.08.01

Abstract

The major cause of deterioration for the concrete bridge decks exposed to de-icing chemicals would be chloride-induced reinforcement corrosion. Thus, in this paper, in order to predict time to corrosion for concrete bridge decks in the urban area, chloride concentration was measured with depth from the surface. A frequency analysis on surface chloride concentration and chloride diffusion coefficient of concrete bridge deck equals 0.192, 29.828 in the scale parameter and 7.899, 1.983 in the shape parameter of gamma distribution. The average value of surface chloride concentration equals 1.5 kg/㎥ and condenses from 1 to 2 kg/㎥ in the level of probability 70%. From the probabilistic results, it is confirmed that 26mm of minimum cover depth in order to target 20 years over is calculated. The countermeasure strategy to extend the service life of concrete bridge deck exposed to de-icing chemicals would be an effective method to increase cover depth and to place high performance concrete, which could lead to reduce the chloride diffusion coefficient and distribution range.

본 연구는 서울시에 위치한 콘크리트 교량 바닥판의 제빙화학제로 인한 열화속도를 추정하기 위하여 제빙화학제 사용현황을 조사하고 실구조물 조사에 의한 표면 염소이온량 누적정도와 염소이온 확산계수의 확률 분포적 특성을 고려하여 국내 환경에 적합한 내구수명 예측을 수행하였다. 연구결과, 무작위성을 나타내는 표면 염소이온량과 염소이온 확산계수는 각각 규모매개변수 0.192, 29.828, 형상매개변수 7.899, 1.983을 갖는 gamma 분포가 형성되었다. 표면 염소이온량은 평균 1.5kg/㎥이며 약70%의 확률수준에서 1∼2kg/㎥까지 농축되었다. 본 연구결과를 종합하여 볼 때 콘크리트 교량 바닥판의 설계내구수명이 20년 이상이 되려면 필요한 피복두께는 최소 26mm 이상으로 시공되어야 하며 고내구성 콘크리트로 타설하여 염소이온 확산계수를 감소시키는 것이 유효할 것으로 판단된다.

Keywords

References

  1. 이창수, 설진성, 윤인석, '서울시내 140개 콘크리트 교량의 내구성 현황분석', 한국구조물진단학회 논문집 제4권 3호, 2000. 7
  2. コンクリ-ト工學協會,'融雪劑によるコンクリ一ト構造物の劣化硏究委員會', 融雪劑による鐵筋コンクリ一ト構造物の劣化硏究委員書報告書,1999.11
  3. R.E. Weyers, M.G. Fitch, E.P. Laren, I.L. Al-Quadi,W.P. Chamberlin, and P.C. Hoffman, 'Concrete Bridge Protection, and Rehabilitation: Chemical and Physical Techniques, Service Life Estimates,' SHRP-S-668,National Research Council, Washington D.C, 1994
  4. 서울특별시, 2000년 제설대책
  5. JCI-SC4,'硬化コンクリ一ト中に含まれる鹽分の分析方法,'1987
  6. Weyers R.E., 'Service Life Model for ConcreteStructures in Chloride Laden Environments,' ACI Material Journal, No. 95-M42, 1998
  7. Liu Y., 'ModelIing the Time to Corrosion Crackingof the Cover Concrete in Chloride ContaminatedConcrete Structures,' Ph. D Thesis, Virginia Polytechnic Institute and State University, 1996
  8. ACI Committee 201, 'Guide of Durable Concrete,'ACI Practice Manual, 1997
  9. ACI Committee 222, 'Corrosion of Metals in Concrete,' ACI Practice Manual, 1985
  10. Weyers R.E, Fitch M.G. , Laren E.P, Al-Quadi I.L.,Chamberlin W.P., and Hoffman P.C., 'ConcreteBridge Protection and Repair, and Rehabititation.Relative to Reinforcement Corrosion.' A MethodsApplication Manual,' SHRP-S-360, National ResearchCouncil, Washington D.C., 1994
  11. Luciano J. and Miltenberger M., 'Predicting Chloride Diffusion Coefficient from Concrete Mixture Proportions,' ACI Material Journal, No. 96-M86, 1999
  12. Thomas M.D.A, 'Modelling Chloride diffusion in Concrete : Effect of Fly Ash and Slag,' Cement and Concrete Research, Vol.29, 1999
  13. Zemajtis J., 'Modelling the Time to CorrosionInitiation for Concrete with Mineral Admixturesand/or Corrosion Inhibitors in Chlohde LadenEnvironment' Ph. D Thesis, Virginia PolytechnicInstitute and State University, 1998
  14. J.R., Clifton, 'Predicting Service Life of Concrete,' ACIMaterials Journal, Vol.90, No.6, 1993, pp.611-617
  15. Harold R.L., 'Analysis of Variance in ExperimentalDesign,' Springer-Verlag, 1992
  16. Hoffman P.C. and Weyers R.E., 'Predicting CritiocalChloride Levels in Concrete Bridge Decks,'Schueller GI, Shinozuka M. Yao JTP(eds.) StructuralRelaibility : Proceedings of IC0SSAR'93, Rotterdam,1994
  17. 김도겸, '콘크리트 중의 염화물 확산속도에 따른 철근부식 예측에 관한 연구,' 박사학위논문, 충남대학교,2000
  18. Hobbs DW, 'Minimum Acquirements for DurableConcrete: Carbonation and Chloride-Induced Corro-sion, Freeze-Thaw Attack and Chemical Attack,'Crownthorn (UK), British Cement Association, 1998
  19. Bamforth P B, Pnce W.F.,'An International Reviewof Chloride Ingress into Structural Concrete,'Report No.1303/96/9092, Taywood Engineehng Ltd.Technology Division, 1997
  20. McBean and Al-Nassri McBean, E, and Al-Nassri,'Migration Pattern of De-Icing Salts from Roads,'Journal of Environmental Management, Vol.25,1987, pp.231-238
  21. Lindvall, A., Andersen, A., and Nilsson, L.-O.,'Chloride Ingress Data from Danish and SwedishRoad Bridges Exposed to Splash from De-IcingSalt,' In Proceedings of 2nd International RILEMWorkshop on Testing and Modeling the ChlorideIngress into Concrete, Paris, 2000, pp.85-103
  22. Blomqvist, G., 'Impact of De-Icing Salt on Roadside Vegetation A Literature Review,' VTI Rapport 427A, Swedish National Road and Transport Research Institute, Linkping, 1998
  23. Volkwein, A, Domer, H, and Springenschmid, R., 'Untersuchungen zur Kloridkorrosion der Bewehrung von Autobahn-Brcken aus Stahl-oder Spannbeton (Investigation of Chloride Induced Reinforcement Corrosion in Highway Brides Made of Steel or Reinforced Concrete,' Forschung, Strassenbau und Strassenverkehrstecnik, Heft 460, Berlin, 1986
  24. Maage M., Helland S., and Carlsen J.E., 'Practical Non-Steady State Chloride Transport as a Part ofa Model for Predicting the Initiation Period,'Proceeding International RILEM Workshop:Chloride Penetration Into Concrete, Oct.15-18, Saint-Remy-Les-Chevreuse, 1995, pp.398-406
  25. HETEK, 'A System for Estimation of Chloride Ingress into Concrete: Theoretical Background,' Report No.83, Road Directorate, Denmark Ministry of Transport, 1997
  26. OECD, 'Bridge Rehabilitation and Strengthening,'1983
  27. Saito M., 'The Development of Optimal Strategiesfor Maintenance,' Rehabilitation and Replacement ofHighway Bridges, Final Report, Vol.4, 1989
  28. Whiting D., Detwiler R.,"Silica Fume Concrete for Bridge Deck,' NCHRP Report 410, Transportation Research Board, National Academy Press, 1998
  29. Eric Embacher,'Using' Silica Fume Concrete withFull-Depth Bridge Deck Construction in Minnesota,'Mn DOT MN/RC 2001-18, 2001