Component Identification using Domain Analysis based on Clustering

클러스터링에 기반 도메인 분석을 통한 컴포넌트 식별

  • Published : 2003.04.01

Abstract

CBD is a software development approach based on reusable component and supports easy modification and evolution of software. For the success of this approach, a component must be developed with high cohesion and low coupling. In this paper, we propose the two types of clustering analysis technique based on affinity between use-cases and classes and propose component identification method applying to this technique. We also propose component reference model and CBD methodology framework and perform a ease study to demonstrate how the affinity-based clustering technique is used in component identification method. Component identification method contains three tasks such as component extraction, component specification and component architecting. This method uses object-oriented concept for identifying component, which improves traceability from analysis to implementation and can automatically extract component. This method reflects the low coupling-high cohesion principle for good modularization about reusable component.

컴포넌트 기반 소프트웨어개발 (CBD: Component Based Development)은 재사용 부품을 기반하여 소프트웨어 개발, 수정, 유지보수를 용이하게 지원한다. 따라서 컴포넌트는 강한 응집력과 양한 결합력으로 개발되어야 한다. 본 논문에서는use case와 클래스를 간에 유사성을 통한 클러스터링 분석에 기반 하여 컴포넌트 식별에 대해 연구한다. 컴포넌트 참조 모델과 프레임워크를 제시하여 사례를 통해 검증한다. 컴포넌트 식별 방법은 추출, 명세 및 아키?쳐를 지원한다. 이들 방법론은 기존의 객체지향 방법론을 참조하며 분석에서 구현까지의 추적성을 지원하며 재사용 컴포넌트의 모듈성 지원을 위해 강한 응집력과 약한 결합력을 반영한다.

Keywords