형질 전환된 담배 세포에서 hGM-CSF 생산 연구

hGM-CSF Production from Transgenic Nicotiana tabacum

  • 변한열 (아주대학교 화학생물공학부 생명공학전공) ;
  • 변상요 (아주대학교 화학생물공학부 생명공학전공)
  • 발행 : 2003.12.01

초록

형질 전환된 담배 seed에서 담배 식물체를 유도하여 White 액체 배지에서 기관 배양하였다. 암조건, sucrose 2%의 조건에서 좋은 growth pattern을 나타내었고, 계대 배양은 외마디법을 이용하여 2주마다 하였다. 기관 배양에서 hGM-CSF production pattern을 보면, intracellular에서는 큰 변화 없이 약 30 ng/g의 일정한 농도를 나타내었다. Extracellular에서 hGM-CSF 농도는 배양 6일 이후부터 급속하게 증가하기 시작하여 배양 12일째에 약 0.2ng/$m\ell$의 농도를 나타낸다. 기관배양은 다른 식물세포 배양 시스템에 비해 생산되어진 단백질의 안정성이 크다는 장점에 비해 세포 내에서 배지 내로의 단백질 분비가 적다는 단점이 있다. 이를 극복하기 위해 다양한 permeabilizing agents를 투여하여 담배 세포의 permeability를 증가시키고자 하였다. 그 결과, Pluronic F-68과 PEG8000을 첨가한 경우 담배 세포에서 배지 내로의 단백질 분비가 원활해졌음을 확인할 수 있었다.

Plant cell culture can be divide into two classes non-organic culture and organic culture. Non-organic culture such as suspension culture has many researches, however organic culture about recombinant protein production has little researches. Recombinant protein produced through organ culture is quite stable and it can make proteins by itself without any grow regulators. Therefore organ culture is much easier than other methods. In this research, we used transformed tobacco seed. At first we germinated the seed then separated stems and leaves from the grown plant. And raised in liquid medium by in vitro vegetative reproduction. Continuing most suitable conditions, we compared the Quantities of recombinant protein from intra cellular with from extra cellular. And adding some permeabilizing agents (Pluronic F-68, Triton X-100, DMSO, PEG8000), we increased the productivity of the recombinant protein.

키워드

참고문헌

  1. Curr. Opin. Biotech. v.12 Producing proteins in transgenic plants and animals Larrick,J.W.;D.W.Thomas https://doi.org/10.1016/S0958-1669(00)00236-6
  2. Current Opinion in Biotechnol v.11 Foreign protein production in plant tissue cultures, Current Opinion in Biotechnol Doran,P.M. https://doi.org/10.1016/S0958-1669(00)00086-0
  3. Trends Biotechnol. v.15 Plants as bioreactors for biopharmaceuticals: regulatory considerations Miele,L. https://doi.org/10.1016/S0167-7799(97)84202-3
  4. J. Ferment. Bioeng. v.86 Light-controlled expression of a foreign gene using the chalcone synthase promoter in tobacco BY-2 cells Kurata,H.;T.Takemura,S.;Furusaki;C.I.Kado https://doi.org/10.1016/S0922-338X(98)80137-2
  5. Biotechnol. Lett. v.19 The effect of Polyvinylpyrrolidone (PVP) on the heavy chain monoclonal antibody production form plant suspension cultures LaCount,W.;Gg. An;J.M.Lee https://doi.org/10.1023/A:1018383524389
  6. Protein Expres. Purif. v.13 Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture Magnuson,N.S.;P.M.Linzmaier;R.Reeves;G.An;K.HayGlasee;J.M.Lee https://doi.org/10.1006/prep.1998.0872
  7. Protein Expres. Purif. v.15 Processing of preproricin in transgenic tobacco Sehnki,P.C.;R.J.Ferl https://doi.org/10.1006/prep.1998.0993
  8. Mol. Cells v.7 Establishment of a transgenic tobacco cell suspension culture system for producing murine granulocyte-macrophage colony stimulation factor Lee,J.S.;S.J.Choi;H.S.Kang;W.G.Oh;K.H.Choi;T.h.Kwon;D.H.Kim;M.S.Yang
  9. Protein Expr. Purif. v.19 Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells James,E.A.;C.wang;Z.wang;R.Reeves;J.H.Shin;N.S.Magnuson;J.M.Lee https://doi.org/10.1006/prep.2000.1232
  10. Enzyme Micorb. Tech. v.30 Production of biologically active hG-CSF by transgenic plant cell suspension culture Hong,S.Y.;T.H.Kwon;O.H.Kim;J.H.Lee;Y.S.Jang;M.S.Yang https://doi.org/10.1016/S0141-0229(02)00055-8
  11. The cytokine handbook John,E.J.R.;N.M.Gough
  12. Nature v.309 Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte-macrophage colony stimulating factor Gough,N.M.;J.Gough;D.Metcalf;A.Kelso;D.Grail;N.A.Nicola;A.W.Burgess;A.R.Dunn
  13. Proc. Natl. Acad. Sci. USA v.82 Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells Lee,F.;T.Yokota;T.Otsuka;L.Gemmell;N.Larson;J.Luh;K.Arai;D.Rennick https://doi.org/10.1073/pnas.82.13.4360
  14. Blood v.77 Molecular physiology of granulocyte-macrophage colony-stimulating factor Gasson,J.C.
  15. N. Engl. J. Med. v.319 Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression Antman,K.S.;J.D.Griffin;A.Elias;M.A.Socinski;L.Ryan;S.A.Cannistra;D.Oette;M.Whiteley;E. 3rd Frei;L.E.Schnipper https://doi.org/10.1056/NEJM198809083191001
  16. Blood v.73 Treatment of refractory aplastic anemia with recombinant human granulocyte-macrophage colony-stimulating factor Champlin,R.E.;S.D.Nimer;P.Ireland;D.H.Oette;D.W.Golde
  17. J. Clin. Oncol. v.7 Subcutaneous granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndrome: toxicity, pharmacokinetics, and hematological effects Thompson,J.A.;D.J.Lee;P.Kidd;E.Rubin;J.Kaufmann;E.M.Bonnem;a.Fefer https://doi.org/10.1200/JCO.1989.7.5.629
  18. Physiol. Plant v.74 Physiological and biolchemical charaterization of a suspension culture system for sustained exponential growth of Nicotiana silvestris Bonner,C.A.;C.Kenyon;R.A.Jensen https://doi.org/10.1111/j.1399-3054.1988.tb04933.x
  19. Biochem. Eng. J. v.4 Effect of osmotic pressure on human α₁-antitrypsin production by plant cell culture Terashima,M.;Y.Ejiri;N.Hashikawa;H.Yoshida https://doi.org/10.1016/S1369-703X(99)00036-4
  20. J. Fer. Bioeng. v.83 Enhanced Secretion of Peroxidase from Carro Hairy Roots Using Polyethylene Glycol Y.H.Kim;J.H.Kim;Y.J.Yoo https://doi.org/10.1016/S0922-338X(97)80151-1
  21. Biotech Lett. v.24 Stimulation of murine granulocyte macrophage-colony stimulating factor production by Pluronic F-68 and polyethylene glycol in transgenic Nicotiana tabacum cell culture S.Y.Lee;D.I.Kim https://doi.org/10.1023/A:1020609221148