Biological Constraints in Algal Biotechnology

  • Torzillo, Giuseppe (CNR-Istituto per lo Studio degli Ecosistemi, Sezione di Firenze, Via Madonna del Piano) ;
  • Pushparaj, Benjamin (CNR-Istituto per lo Studio degli Ecosistemi, Sezione di Firenze, Via Madonna del Piano) ;
  • Masojidek, Jiri (Institute of Physical Biology, University of South Bohemia, Department of Autotrophic Microorganisms, Institute of Microbiology, Academy of Sciences) ;
  • Vonshak, Avigad (Microalgal Biotechnology Laboratory, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus)
  • Published : 2003.12.01

Abstract

In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale re-quired for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.

Keywords

References

  1. Proc. Natl. Acad. Sci. v.92 Light intensity regulation of cab gene transcription is signaled by the redox state of the PQ pool Ecoubas,J.M.;M.Lomas;J.LaRoche;P.G.Falkowski https://doi.org/10.1073/pnas.92.22.10237
  2. Trends Plant Sci. v.3 Energy balance and acclimation to light and cold Huner,N.P.A.;G.Oquist;F.Sarhan https://doi.org/10.1016/S1360-1385(98)01248-5
  3. Algal Culture: Form Laboratory to Pilot Plant Current status of the large-scale culture of algae Burlew,J.S.;J.S.Burlew(ed.)
  4. Int. J. Energ. Res. v.19 Transient analysis and performance studies of two tubular photobioreactors for outdoor culture of Spirulina Prakash,J.;G.Torzillo;B.Pushparaj;P.Carlozzi;R.Materassi https://doi.org/10.1002/er.4440190603
  5. Water Res. v.13 Outdoor algal mass cultures: Ⅱ. Photosynthetic yield limitations Goldman,J.C. https://doi.org/10.1016/0043-1354(79)90083-6
  6. Arch. Hydrobiol. Beith. Erg. Limnol. v.11 Spirulina culture in Israel Richmodn,A.;A.Vonshak
  7. J. Phycol. v.32 Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities Hu,Q.;H.Guterman;A.Richmond https://doi.org/10.1111/j.0022-3646.1996.01066.x
  8. Biotechnol. Bioeng. v.69 Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae Morita,M.;Y.Watanabe;H.Saiki https://doi.org/10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0
  9. J. Appl. Phycol. v.7 Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae Lee,Y.K.;S.Y.Ding;C.S.Low;Y.C.Chang;W.L.Forday;P.C.Chew https://doi.org/10.1007/BF00003549
  10. Biotechnol. Bioeng. v.81 Dilution of solar radiation through "culture" lamination in photobioreactor rows facing southnorth: A way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis) Carlozzi,P.
  11. Enzyme Microb. Technol. v.21 Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance Grima,E.M.;F.G.Camacho;J.A.S.Peres;F.G.A.Fernandez;J.M.F.Sevilla https://doi.org/10.1016/S0141-0229(97)00012-4
  12. Biotechnol. Bioeng. Symp. v.15 Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted through optical fibers Mori,K.
  13. Solar Energy v.65 Solar fiber-optic mini-dishes: A new approach to the efficient collection of sunlight Feuermann,D.;J.M.Gordon https://doi.org/10.1016/S0038-092X(98)00129-7
  14. Appl. Biochem. Biotechnol. v.28;29 Glutamate production from CO₂ by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light diffusing optical fibers Matsunaga,T.;H.Takeyama;H.Sudo;N.Oyama;S.Ariura;H.Takano;H.Hirano;J.G.Burgess;K.Sode;N.Nakamura
  15. J. Ferment. Bioeng. v.81 Carbon dioxide fixation in bath culture of Chlorella sp.using a photobioreactor with sunlight coolection device Hirata,S.;M.Hayashitani;M.taya;S.Tone https://doi.org/10.1016/0922-338X(96)85151-8
  16. J. Biotechnol. v.70 An integrated solar and artificial light system for internal illumination of photobioreactors Ogbonna,J.C.;T.Soejima;H.Tanaka https://doi.org/10.1016/S0168-1656(99)00081-4
  17. Biotechnol. Bioeng. v.81 Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects Janssen,M.;J.Tramper;L.R.Mur;R.H.Wijffels https://doi.org/10.1002/bit.10468
  18. Biotechnol. Bioeng. v.25 A simple algal production system designed to utilize the flashing light effect Laws,E.A.;K.L.Terry;J.Wickman;M.S.Chalup https://doi.org/10.1002/bit.260251004
  19. Biotechnol. Bioeng. v.32 Optimization of microalgae production in a shallow outdoor fiume Laws,E.A.;T.Satoru;J.Hirata;L.Pang https://doi.org/10.1002/bit.260320204
  20. Appl. Microbiol. Biotechnol. v.58 Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers Ugwu,C.U.;J.C.Ogbonna;H.Tanaka https://doi.org/10.1007/s00253-002-0940-9
  21. Appl. Microbiol. Biotechnol. v.45 Productivity of Spirulina in a strongly curved outdoor tubular photobioreactor Carlozzi,P.;G.Torzillo https://doi.org/10.1007/s002530050642
  22. Abstracts of the 9th International Conference on Applied Algology Swirling flow implementation in photobioreactor as a potential means of improving the microalgae culture yields Muller-Feuga,A.;R.Le Guedes;J.Pruvost;P.Legentilhomme;J.Legrand
  23. J. Appl. Phycol. v.10 Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit photosynthetic productivities and photon use efficiencies than normally pigmented cells Melis,A.;J.Neidhardt;J.R.Benemann
  24. Photosynth. Res. v.56 Photosystem-Ⅱ repair and chloroplast recovery from irradiance stress: Relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) Neidhardt,J.;J.R.Benemann;L.Zhang;A.Melis https://doi.org/10.1023/A:1006024827225
  25. J. Appl. Phycol. v.9 Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments Nakajima,Y.;R.Ueda
  26. J. Appl. Phycol. v.12 The effect of reducing light-harvesting pigments onmarine microalgal productivity Nakajima,Y.;R.Ueda https://doi.org/10.1023/A:1008108500409
  27. Algal and Cyanobacterial Technology The future of microalgal biotechnology Benemann,J.R.;R.D.Cressewell(ed.);T.A.V.Rees(ed.);N.Shah(ed.)
  28. Planta v.217 tlal, a DNA insertional transformant of the green alga Chlamidomonas reinhardtii with truncated light-harvesting chlorophyll antenna size Polle,J.E.W.;S.D.Kanakagiri;A.Melis
  29. Biochim. Biophys. Acta v.1506 Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem Ⅱ from photoinhibition in the green alga Dunaliella salina Jin,E.S.;E.W.;E.S.Jin;J.E.W.Polle;A.Melis https://doi.org/10.1016/S0005-2728(01)00223-7
  30. J. Appl. Phycol. v.15 A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance Masojidek,J.;S.Papacek;M.Sergejevova;V.Jirka;J.Cerveny;J.Kunc;J.Korencko;O.Verbovikova;J.Kopecky;J.Stys;G.Torzillo https://doi.org/10.1023/A:1023849117102
  31. SC. de L'eau v.6 Biological limitations in developing the biotechnology of algal mass cultivation Vonshak,A.
  32. J. Appl. Phycol. v.2 Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways Richmodn,A.;E.Lichtenberg;B.Stahl;A.Vonshak https://doi.org/10.1007/BF02179776
  33. Transport Phenomena Bird,R.B.;W.E.Stewart;E.N.Lightfoot
  34. Plant Cell Environ. v.15 Photoadaptation, phoinhibition and productivity in the blue-green alga Spirulina platensis grown outdoors Vonshak,A.;R.Guy https://doi.org/10.1111/j.1365-3040.1992.tb01496.x
  35. J. Phycol. v.34 Online monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria) Torzillo,G.;P.Bernardini;J.Masojidek https://doi.org/10.1046/j.1529-8817.1998.340504.x
  36. J. Appl. Phycol. v.6 Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis Vonshak,A.;G.Torzillo;L.Tomaselli https://doi.org/10.1007/BF02185901
  37. J. Appl. Phycol. v.11 A. Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients Lu,C.M.;A.Vonshak https://doi.org/10.1023/A:1008195927725
  38. Enzyme Microb. Technol. v.24 Use of concentric-tube airlift ohotobioreactors for microalgal outdoor mass cultures Camacho,G.F.;A.C.Gomez;F.G.A.Fernadez;J.F.Sevilla;E.M.Grima https://doi.org/10.1016/S0141-0229(98)00103-3
  39. J. Appl. Phycol. v.8 In-situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors Torzillo,G.;P.Accolla;E.Pinzani;J.Masojidek https://doi.org/10.1007/BF02178571
  40. Photoinhibition Low temperature chlorophyll fluorescence in leaves and its relationship to photon yield of phototosynthesis in photoinhibition Bjorkman,O.;D.J.Kyle(ed.);C.BlOsmond(ed.);C.J.Arntzen(ed.)
  41. Biochim. Biophys. Acta v.909 The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence Genty,B.;J.M.Briantais;N.R.Baker
  42. Photoinhibition Algal photoinhibition and photosynthesis in the aquatic environment Neale,J.;D.J.Kyle(ed.);C.B.Osmond(ed.);C.J.Arntzen(ed.)
  43. Annu. Rev. Plant Physiol. Plant Biol. v.45 Photoinhibition of photosynthesis in nature Long,S.P.;S.Humphiries;G.P.Falkowski
  44. Photosynth. Res. v.58 Compensatory changes in photosystem Ⅱ electron turnover rates protect phtosynthesis from photoinhibition Behrenfeld,M.J.;O.Prasil;Z.S.Kolber;M.Babin;P.G.Falkowski https://doi.org/10.1023/A:1006138630573
  45. Plant Cell Environ. v.24 Sub-optimal morning temperature induces photoihibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta) Vonshak,A.;G.Torzillo;J.Masojidek;S.Boussiba https://doi.org/10.1046/j.0016-8025.2001.00759.x
  46. J. Ferment. Bioeng. v.85 Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors Hu,Q.;M.Faiman;A.Richmond https://doi.org/10.1016/S0922-338X(97)86773-6
  47. Biotechnol. Bioeng. v.74 Evaluation of photobioreactor heat balance for predicting changes in culture medium temperature due to light irradiation Morita,M.;Y.Watanabe;H.Saiki https://doi.org/10.1002/bit.1137
  48. Photoinhibition CO₂ and O₂ interaction in photoinhibition Krause,G.H.;G.Cornic;D.J.Kyle(ed.);C.B.Osmond(ed.);C.J.Arntzen(ed.)
  49. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress Adada,K.;N.r.Baker(ed.);J.R.Bowyer(ed.)
  50. Abstracts of Third European Phycological Congress Photoinhibitoruy stress induced by high oxygen and low temperature in outdoor clutures of Arthrospira platensis grown in closed photobioreactors Torzillo,G.;J.Komenda;J.Kopecky;C.Faraloni;J.Masojidek
  51. Pigments in Plants. Hager,A.
  52. J. Biotechnol. v.92 Tubular photobioreactor design for algal cultures Grima,E.M.;F.G.A.Fernandez;Y.Chisti https://doi.org/10.1016/S0168-1656(01)00353-4
  53. Physiol. Plant. v.97 Light and oxygen stress in Spirulina platensis (Cyanobacteria) grown outdoors in tubular reactors Vonshak,A.;G.Torzillo;P.Accolla;L.Tomaselli https://doi.org/10.1111/j.1399-3054.1996.tb00494.x
  54. Biotechnol. Lett. v.17 Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis Markez,F.J.;K.Sasaki;N.Nishio;S.Nagai
  55. Biotechnol. Bioeng. v.26 Effect of oxygen concentration on the protein content of Spirulina biomass Torzillo,G.;L.Giovannetti;F.Bocci;R.Materassi https://doi.org/10.1002/bit.260260920
  56. J. Appl. Phycol. v.5 A new tubular reactor for mass production of microalgae outdoors Richmond,A.;S.Boussiba;A.Vonshak;R.Kopel https://doi.org/10.1007/BF02186235
  57. J. Phycol. v.27 Environmental effects on algal photosynthesis: temperature Davison,I.R. https://doi.org/10.1111/j.0022-3646.1991.00002.x
  58. Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology Bioreactors Torzillo,G.;A.Vonshak(ed.)
  59. Abstracts of 8th International Conference on Applied Algology A real-life, large scale and fully controlled photobioreactor for microalgae production Fornari,L.F.;F.L.Lupoli;A.C.Carella;G.V.G.V.Gregorini
  60. J. Appl. Phycol. v.9 An integrated culture system for outdoor productin of microalgae and cyanobacteria Pushparaj,B.;E.Pelosi;M.R.Tredii;E.Pinzani;R.Materassi https://doi.org/10.1023/A:1007988924153
  61. Biores. Technol. v.38 Cellfragility: The key problem of microalgae mass production in closed photobioreactors Gudin,C.;D.Chaumont https://doi.org/10.1016/0960-8524(91)90146-B
  62. Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation Shear sensitivity Chisti,Y.;M.C.Flickinger(ed.);S.W.Drew(ed.)
  63. J. Chem. Biotechnol. v.33B A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance Pirt,S.J.;Y.K.Lee;M.R.Walach;M.W.Pirt;H.H.M.Balyuzi;M.J.Bazin
  64. Biotechnol. Bioeng. v.42 A two-plane photobioreactor for outdoor culture of Spirulina Torzillo,G.;P.Carlozzi;B.Pushparaj;E.Montaini;R.Materassi https://doi.org/10.1002/bit.260420714
  65. J. Chem. Technol. Biotechnol. v.40 Effect of hydrodynamic stress on Dunaliella growth Silva,H.J.;T.Cortinas;R.J.Ertola https://doi.org/10.1002/jctb.280400105
  66. Abstracts of 5th European Workshop How power supply affects microalgal growth Allias,B.;C.M.G.Lopez;F.G.A.Fernandez;J.M.F.Sevilla;J.L.G.Sanchez;E.M.Grima
  67. J. Appl. Phycol. v.12 Scale-up of tubular photobioreactors Grima,E.M.;F.G.A.Fernandez;F.G.Camaho;F.C.Rubio;Y.Chisti https://doi.org/10.1023/A:1008110819338