Tyrosine Kinase is Involved in Hemin-Induced Pyresis

  • Lee, Sang-Ho (Lab. of Pharmacology, College of Pharmacy, Sungkyunkwan University) ;
  • Jang, Choon-Gon (Lab. of Pharmacology, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Seok-Yong (Lab. of Pharmacology, College of Pharmacy, Sungkyunkwan University)
  • 발행 : 2003.05.01

초록

To investigate the mechanisms involved in hemin-induced febrile response, the rectal temperature of rats were measured after intracerebroventricular (i.c.v.) injections of hemin, with or without antagonists. Hemin ($10\mu\textrm{g}$) elicited a significant febrile response, which lasted from 30 min, to more than 6 h, after its administration, but this was not the case with biliverdin (i.c.v.) and bilirubin (i.c.v.). The hemin-induced febrile response was significantly inhibited by pretreatment with an inhibitor of tyrosine kinase (genistein), but not by pretreatment with an inhibitor of protein kinase C (chelerythrine) and a scavenger of iron (deferoxamine). These results suggest that tyrosine kinase is involved in the hemin-induced febrile response.

키워드

참고문헌

  1. Abraham, N. G., Lin, J. H. C., Schwartzman, M. L., Levere, R. D., and Shibahara, S., The physiological significance of heme oxygenase. Int. J. Biochem., 20, 543-558 (1988) https://doi.org/10.1016/0020-711X(88)90093-6
  2. Atkins, E. and Bodel, P., Clinical fever: its history, manifestations and pathogenesis. Fed. Proc., 38, 57-63 (1979)
  3. Belanger, S., Lavoie, J. C., and Chessex, P., Influence of bilirubin on the antioxidant capacity of plasma in newborn infants. Biol. Neonat., 71, 233-238 (1997) https://doi.org/10.1159/000244422
  4. Blatteis, C. M. and Sehic, E., Prostaglandin $E_2$; a putative fever mediator. In: Mackowiak P. A., editor. Fever: basic mechanisms and management. 2nd ed. New York: Raven-Lippincott, pp. 117-148 (1997)
  5. Charles, A. D., Silvia, G., and Tamas, B., Fever: links with an ancient receptor. Current Biol., 9, R147-R150 (1999) https://doi.org/10.1016/S0960-9822(99)80085-2
  6. Dawson, T. M. and Snyder, S. H., Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J. Neurosci., 14, 5147-5159 (1994)
  7. Hiromi, T. and Mayumi, M., In vivo evidence that activation of tyrosine kinase is a trigger for lipopolysaccharide-induced fever in rats. Brain Res., 852, 367-373 (2000) https://doi.org/10.1016/S0006-8993(99)02177-0
  8. Ihle, J. N., Cytokine receptor signaling. Nature, 377, 591-594 (1995) https://doi.org/10.1038/377591a0
  9. Jang, C. G., Lee, S. J., Yang, S. I., Kim, J. H., Sohn, U. D., and Lee, S. Y., Carbon monoxide as a novel central pyrogenic mediator. Arch. Pharm. Res., 25, 343-348 (2002) https://doi.org/10.1007/BF02976637
  10. Johnson, R. A., Kozma, F., and Colombari, E., Carbon monoxide: from toxin to endogenous modulator of cardiovascular functions. Braz. J. Med. Biol. Res., 32, 1-14 (1999) https://doi.org/10.1590/S0100-879X1999000100001
  11. Jung, J. K. and Lee, S. Y., Pyrogenic effects of nitric oxide and carbon monoxide. Proceeding of the 51st Annual Meeting of Korean Society of Pharmacology, 62, 55-61 (1999)
  12. Kluger, M. J., Fever: role of pyrogens and cryogens, Physiol. Rev., 71, 93-127 (1991) https://doi.org/10.1152/physrev.1991.71.1.93
  13. Kluger, M. J., Kozak, W., Leon, L., Soszynski, D., and Conn, C. A., Cytokines and fever. Neuroimmunomodulation, 2, 216-223 (1995) https://doi.org/10.1159/000097199
  14. Kluger, M. J., Fever: role of pyrogens and cryogens. Physiol. Rev., 71, 93-127 (1991) https://doi.org/10.1152/physrev.1991.71.1.93
  15. Kozak, W., Klir, J. J., Conn, C. A., and Kluger, M. J., Attenuation of lipopolysaccharide fever in rats by protein kinase C inhibitors. Am. J. Physiol., 273, R873-R879 (1997)
  16. Lin, M. T. and Lin, J. H., Involvement of tyrosine kinase in the pyrogenic fever exerted by NOS pathways in organum vasculosum laminae terminals. Neuropharmacology, 39, 347-352 (2000) https://doi.org/10.1016/S0028-3908(99)00127-6
  17. Maines, M. D., Carbon monoxide : an emerging regulator of cGMP in the brain. Mol. Cell. Neurosci., 4, 389-397 (1993) https://doi.org/10.1006/mcne.1993.1049
  18. Maines, M. D., The heme oxygenase system : a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol., 37, 517-554 (1997) https://doi.org/10.1146/annurev.pharmtox.37.1.517
  19. Maines, M. D., The heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J., 2, 2557-2568 (1988) https://doi.org/10.1096/fasebj.2.10.3290025
  20. Marks, G. S., Brien, J. F., Nakatsu, K., and McLaughlin, B. E., Does carbon monoxide have a physiological function?. Trens Pharmacol. Sci., 12, 185-188 (1991) https://doi.org/10.1016/0165-6147(91)90544-3
  21. Milton, A. S., Thermoregulatory actions of eicosanoids in the central nervous system with particular regard to the pathogenesis of fever. Ann. NY Acad. Sci., 559, 392-410 (1989) https://doi.org/10.1111/j.1749-6632.1989.tb22625.x
  22. Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates. 3rd ed., Academic Press. Sydney (1997)
  23. Pela I. R., Ferreira, M. E. S., Melo, M. C. C., Silva, C. A. A., Coelho, M. M., and Valenzuela, C. F., Evidence that plateletderived growth factor may be a novel endogenous pyrogen in the central nervous system. Am. J. Physiol., 278, R1275-R1281, 2000 https://doi.org/10.1152/ajpcell.2000.278.6.C1275
  24. Rothwell, N. J., CNS regulation of thermogenesis. Crit. Rev. Neurobiol., 8, 1-10 (1994)
  25. Solomon, H. S., Samie R. J., and Randa, Z., Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res. Rev., 26, 167-175 (1998) https://doi.org/10.1016/S0165-0173(97)00032-5
  26. Solomon, H., Snyder, M. D., and David, E. Baranano., Heme oxygenase: a font of multiple messengers. Neuropsychopharmacology, 25(3), 294-298 (2001) https://doi.org/10.1016/S0893-133X(01)00275-5
  27. Steiner, A. A. and Branco, L. G., Carbon monoxide is the heme oxygenase product with a pyretic action: evidence for a cGMP signaling pathway. Am. J. Physiol., 280, R448-R457 (2001)
  28. Steiner, A. A. and Branco, L. G., Central CO-heme oxygenase pathway raises body temperature by a prostaglandin-independent way. J. Appl. Physiol., 88, 1607-1613 (2000) https://doi.org/10.1152/jappl.2000.88.5.1607
  29. Steiner, A. A., Colombari, E., and Branco, L. G., Carbon monoxide as a novel mediator of the febrile response in the central nervous system. Am. J. Physiol., 277, R499-R507 (1999)
  30. Stocker, R., Glazer, A. N., and Ames, B. N., Antioxidant activity of albumin-bound bilirubin. Proc. Natl. Acad. Sci. USA., 84, 5918-5922 (1987) https://doi.org/10.1073/pnas.84.16.5918
  31. Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., and Ames, B. N., Bilirubin is an antioxidant of possible physiological importance. Science, 235, 1043-1046 (1987) https://doi.org/10.1126/science.3029864
  32. Tsushima, H. and Mori, M., In vivo evidence that activation of tyrosine kinase is a trigger for lipopolysaccharide-induced fever in rats. Brain Res., 852, 367-373 (2000) https://doi.org/10.1016/S0006-8993(99)02177-0
  33. Tsushima, H. and Mori, M., Involvement of protein kinase C and tyrosine kinase in lipopolysaccharide-induced anorexia. Pharmacol. Biochem. Behav., 69, 17-22 (2001) https://doi.org/10.1016/S0091-3057(01)00500-7
  34. Ullrich, A. and Schlessinger, J., 1990. Signal transduction by receptors with tyrosine kinase activity. Cell, 61, 203-212 (1990) https://doi.org/10.1016/0092-8674(90)90801-K