• 제목/요약/키워드: water potential

검색결과 5,522건 처리시간 0.037초

감자연부병 (Erwinia carotovora var. atroseptica)에 의한 감자괴경부패와 water potential 에 관한 연구 (Influence of Water Potential in Potato Tuber on Decay Development by Bacterial Soft Rot Caused by Erwinia carotovora var. atroseptica)

  • 함영일
    • 한국응용곤충학회지
    • /
    • 제23권4호
    • /
    • pp.242-246
    • /
    • 1984
  • 감자 괴경에 타박상을 입혔거나 세균현탁액을 주입했을 때 낮은 water potential(-6.46 bar) 보다 높은 water potential (-6.06 bar)에서 더 쉽게 부패를 초래하였으며, 높은 water potential을 가진 괴경과 낮은 water potential을 가진 괴경 사이에 있어서의 부패의 진전에는 큰 차이를 발견할 수 있었으며, 현탁액의 농도의 종류에 따른 괴경의 연부병의 이병정도는 높은 water potential에서 높았으며, 세균 현탁액 농도의 $ED_{50}$은 높은 water potential에서 $10^{8.5}\;cells/ml$이며 낮은 water potential에 서는 $100^{9.8}\;cells/ml$이었으며, 높은 water potential과 낮은 water potential $ED_{50}$에서는 작은 차이를 인정할 수 있었다. 이 시험에서 감자는 상처나 타박상이 나지 않도록 다루어야 하며 수확후 충분히 건조하여야 오랜 운반과 저장중에 연부병 발생을 크게 줄일 수 있다는 것을 나타낸다.

  • PDF

칡(Pueraria thunbergiana) 조직수분관계의 일변화 특성 (The Characteristics of Diurnal Changes in the Tissue-Water Relations of Pueraria thunbergiana)

  • 박용목;최창렬
    • The Korean Journal of Ecology
    • /
    • 제21권1호
    • /
    • pp.89-96
    • /
    • 1998
  • The diurnal changes of the stomatal conductance, transpiration and leaf water potential were measured in order to assess the water relations characteristics of Pueraria thunbergiana in August of 1995 and 1996. The results showed two different responses depending on the duration of rainless days. The microclimatic conditions were highly stressful on 2 August. Daily maximum temperature reached to $39.0{\circ}C$ and vapor pressure deficit was 3.55 KPa. During this time the leaf water potential decreased to -1.02 MPa and a marked reduction of stomatal conductance was shown. However, on 15 August the stomatal conductance increased with increment of photon flux density, and transpiration was highly maintained during the day time. Minimum leaf water potential was only -0.47 MPa in spite of high transpiration rate. Furthermore, on 15 August reduced leaf water potential during the day time was recovered rapidly with decrease of photon flux density, whereas recovery of leaf water potential on 2 August was delayed. However, reduced leaf water potential on 2 August was recovered untile the next dawn. Osmotic potential at turgor loss point of Pueraria thunbergiana on 2, 3 and 15 August was -1.79, -1.70 and -1.60 MPa, respectively. The vapor pressure deficit is more contributive to the regulation of stomatal conductance than leaf water potential.

  • PDF

Fusarium moniliforme의 Propagule형성(形成)과 발아(發芽)에 미치는 Water Potential의 효과(效果) (Effect of Water Potential on Mycelial Growth, Reproduction and Spore Germination by Fusarium moniliforme)

  • 성재모;이은종;박종성
    • 한국균학회지
    • /
    • 제12권3호
    • /
    • pp.99-103
    • /
    • 1984
  • Fusarium moniliforme strain별 균사신장(菌絲伸長)은 Strain IV은 water agar나 PDA에 관계(關係)없이 -14 bars에서 좋았고 -80 bars에서도 균사(菌絲)자람이 정지되지 않았다. Strain II와 Strain IV 를 비교(比較)하여보면 Strain II가 Strain IV보다 각 water potential 에서 균사(菌絲)자람이 좋았다. 분생포자형성(分生胞子形成)은 Strain에 관계(關係)없이 소형분생포자(小型分生胞子)는 0에서 -20bars까지는 점점(漸漸) 형성(形成)이 증가(增加)하다가 -20bars에서 가장 많이 형성(形成)되었으며 -80bars에서도 아주 적은수이지만 형성(形成)이 되었다. 대형분생포자(大型分生胞子)는 -1.4bars에서 포자형성(胞子形成)이 잘 되었고 water potential 떨어짐에 따라 -32bars에서 대형분생포자(大型分生胞子)를 형성(形成)하지 않고 소형분생포자(小型分生胞子)만 형성(形成)하였다. 포자발아(胞子發芽)는 -1.4bars에서 발아율(發芽率)이 좋았고 water potential이 떨어질수록 발아율(發芽率)도 떨어졌다.

  • PDF

Response of Leaf Water Potential and Growth Characteristics to Irrigation Treatment in Soybean

  • Lee, Jeong-Hwa;Seong, Rak-Chun
    • 한국작물학회지
    • /
    • 제48권2호
    • /
    • pp.81-88
    • /
    • 2003
  • Soybeans [Glycine max (L.) Merr.] are frequently exposed to unfavorable environments during growing seasons and water is the most important factor limiting for the production system. The purpose of this study was to determine the leaf water potential changes by irrigation, and to evaluate the relationships of leaf water potential, growth and yield in soybeans. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted in growth chamber and field with irrigated treatments. Leaf water potential of three soybean cultivars was positively correlated with leaf water content during vegetative and reproductive growth stages in growth chamber and field experiments. Leaf water potentials measured for three soybean cultivars under growth chamber were higher than those of under field conditions. Higher leaf water potential with irrigated plots under field was observed compared to conventional plots during reproductive growth stages. Leaf water potentials of three soybean cultivars were continually decreased during reproductive growth stages under field and there was no significant difference among them. Number of leaves, leaf water content, pod dry weight, number of seeds and seed dry weight with irrigated plots were higher than those of conventional plots. The results of this study suggested that leaf water potential could be used as an important growth indicator during the growing season of soybean plants.

Comparative Water Relations of Two Vitis vinifera Cultivars, Riesling and Chardonnay

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • 제24권4호
    • /
    • pp.223-226
    • /
    • 2001
  • The leaf water relations and photosynthetic rate during acute soil drying were compared in potgrown grapevine cultivars, Vitis vinifera cv. Chardonnay and V. vinifera cv. Riesling. Leaf water potential in Riesling decreased significantly from day 2 after water had been withheld, while in Chardonnay leaf water potential for the water-stressed plants was almost identical with that in well watered plants during the first 4 days. Higher stomatal conductance and photosynthetic rate in Chardonnay than Riesling were observed until day 3 after withholding water. Photosynthetic rate in water-stressed Chardonnay was not different from that in control plants until day 3 after withholding water, while that in water-stressed Riesling was reduced markedly from day 2. In Riesling, osmotic potential at turgor loss point was not changed irrespective of watering conditions. However, in Chardonnay osmotic potential at turgor loss point decreased more in the water stressed conditions than in well watered conditions. The osmotic adjustment in Chardonnay under water stress conditions must contribute to the maintenance of higher stomatal conductance and photosynthetic rate than those in Riesling for a significant period of the drying process. Though difference in stomatal conductance between the two cultivars was shown in the process of soil drying, stomatal conductance of both cultivars responded to vapor pressure difference between leaf and ambient air, rather than soil water status and leaf water potential.

  • PDF

P-V 曲線法에 의한 잣나무葉에 水分 特性에 關한 硏究 (Characteristics of water relations paramenters obtained from pressure-volume curves in pinus koraiensis needles)

  • Han, Sang-Sup
    • The Korean Journal of Ecology
    • /
    • 제15권1호
    • /
    • pp.47-58
    • /
    • 1992
  • This study is to investigate the change of the seasonal patterns of relative water relations parameters by the pressure-volume curves in pinus koraiensis needles. The osmotic potentials at full water saturated(Ψ0, sat) and at incipient plasmolysis(Ψ0, tlp) increased in growing season, while decreased in non-growing season. The maximum bulk modulus of elasticity(Emax), relative water content(RWCTLP), and relativefree water content(FWCtlp) at incipient plasmolysis in non-growing season were higher than these of growing season. The maximum pressure potential(Ψp, max) varied from 1.16 to 2.18MPa, torgor index(TI) varied from 3.1 to 4.7. The osmole number(Ns/dw) and symplastic water (Vo/DW) were variable seasonally. The maximum water content(Vt/DW) and apoplastic water(AW) were relatively high in early growing stage, and then decreased to needle aging. The pressure potential(Ψp) and water potential(Ψ) in winter needles were rapidly decreased with decreasing of relative water content. The matric potential occupied over 10 percent of water potential with less than-2.0 MPa.

  • PDF

실내의 저광도하에서 토양수분이 단풍나무의 생육에 미치는 영향 (Effects of Soil Moisture on the Growth of Acer Palmatum under Indoor Low Light Intensity)

  • 윤지영;김민수
    • 한국조경학회지
    • /
    • 제28권4호
    • /
    • pp.21-28
    • /
    • 2000
  • This study is conducted to analyze effects of soil moisture on the growth of maple(Acer palmatum) under indoor low light intensity. Maples grew under three different light intensities such as sunny place(average 353.2W/$m^2$), half shade(average 7.7 W/$m^2$) and shade/(average 1.9W/$m^2$).Under half shady and shady condition, each 24 planters(2 maples planted in each planter) were used and divided into 3 groups treated with different watering points. Three levels of soil water potential were set for watering points, such as -200mbar, -300mbar or -500mbar. Under sunny condition, there were only group of 8 planters, as comparison. Watering was applied when soil water potentials reached -500maber. The results of plant growth experiment are as followed. 1. Under the shady condition, 32 maples died among 48 maples for 7 months. 9 maples survived, watered at soil water potential -200mbar, 5maples at -300mbar and 2maples at -500mbar. 2. Leaf water content ratios were higher under lower light intensity. For the cell wall became thinner under lower light intensity. 3. Maples in shady were easy to die due to having thin cell wall, therefore they were easy to loss the turgor pressure. 4. In case of half shady condition, the group, watered at soil water potential -200mbar, had much smaller amount of rootlet than -300mbar, because there were excessive soil water. The group, watered at soil water potential -500mbar, had smaller amount of rootlet than -300mbar and there was a remarkable difference in leaf water potential in spite of nearly same soil water potential, because leaves received the water stress under lower soil water potential. 5. When maples grew soundly, the leaf water potential was largely influenced by the soil water potential.

  • PDF

EFFECT OF THE WATER-WALL INTERACTION POTENTIALS ON THE PROPERTIES OF AQUEOUS SOLUTIONS CONFINED WITHIN A UNIFORMLY CHARGED NANO-CHANNEL

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.368-376
    • /
    • 2009
  • Studies on the effect of the wall-ion, wall-water, water-ion and ion-ion interaction on properties of water and ions in nano-channels have been performed through the use of different kinds of ions or different models of potential energy between wall-ion or wall-water. On this paper, we address the effect of water-wall interaction potential on the properties of confined aqueous solution by using the molecular dynamics (MD) simulations. As the interaction potential energies between water and wall we employed the models of the Weeks-Chandler-Andersen (WCA) and Lennard-Jones (LJ). On the MD simulations, 680 water molecules and 20 ions are included between uniformly charged plates that are separated by 2.6 nm. The water molecules are modeled by using the rigid SPC/E model (simple point charge/Extended) and the ions by the charged Lennard-Jones particle model. We compared the results obtained by using WCA potential with those by LJ potential. We also compared the results (e.g. ion density and electro-static potential distributions) in each of the above cases with those provided by solving the Poisson-Boltzmann equation.

  • PDF

Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응 (Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress)

  • 최선미;권석윤;곽상수;박용목
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

점토와 조류입자의 제타전위가 부상분리 효율에 미치는 영향 (Effect of Zeta Potential of Clay and Algae Particles on Flotation Efficiency)

  • 최도영;김성진;정흥조;이세일;백도현;이재욱;곽동희
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.437-445
    • /
    • 2005
  • Zeta potential is a key parameter of double layer repulsion for individual particles and can usually be used to interpret the trend of coagulation efficiency. This study focused on the measurement of zeta potential of algae and clay under various experimental conditions including water characteristics (pure water, stream water, reservoir water) and coagulant dose (10~50 mg/L). Results showed that the variation of zeta potential was highly sensitive depending on the water characteristics and coagulation conditions. Zeta potential of two genera of algae (anabaena sp. and microcystis sp.) were changed highly with coagulant dosage, especially. On the basis of trajectory analysis, bubble-floc collision efficiency simulated in terms of zeta potential was fitted well with removal efficiency of chlorophyll-a from algae particles. It was found that the control of zeta potential was important for effective removal of algae particles.