Process Optimization for High Frequency Performance of InP-Based Heterojunction Bipolar Transistors

  • Song, Yongjoo (Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science Technology (KAIST)) ;
  • Jeong, Yongsik (Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science Technology (KAIST)) ;
  • Yang, Kyounghoon (Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science Technology (KAIST))
  • 발행 : 2003.03.01

초록

In this work, process optimization techniques for high frequency performance of HBTs are presented. The techniques are focused on reducing parasitic base resistance and base-collector capacitance, which are key elements determining the high frequency characteristics of HBTs. Several fabrication techniques, which can significantly reduce the parasitic elements of the HBTs for improved high frequency performance, are proposed and verified by the measured data of the fabricated devices.

키워드

참고문헌

  1. H. -F. Chau and Yung-Chung Kao, 'High fmax InAlAs/InGaAs heterojunction bipolar transistors,' IEEE IEDM Tech. Dig., pp. 783-786, 1993 https://doi.org/10.1109/IEDM.1993.347197
  2. K. Yang, G. O. Munns, and G. I. Haddad, 'High fmax InP Double Heterojunction Bipolar Transistors with Chirped InGaAs/InP Superlattice Base-Collector Junction Grown by CBE,' IEEE Electron Device Letters, vol. 18, pp. 553-555, Nov. 1997 https://doi.org/10.1109/55.641443
  3. M. Rodwell at al., 'Submicron Lateral Scaling of HBTs and other Vertical-Transport Devices: toward THz bandwidths,' GAAS 2000, Paris, France, pp. 2-3, Oct. 2000
  4. K. Yang, A. L. Gutierrez-Aitken, X. Zhang, G. I. Haddad, and P. Bhattacharya, 'Design, modeling and characterization of monolithically integrated InP-based ($1.55{\mu}m$) high-speed (24 Gb/s) p-i-n /HBT front-end photoreceivers,' IEEE J. Lightwave Tech., vol.14,pp.1831-1839, Aug. 1996 https://doi.org/10.1109/50.532020
  5. W. E. Stanchina, M. Sokolich, and K.R. Elliott, 'Process and integration technologies for InP ICs,' Proc. Indium Phosphide and Related Materials, pp. 489-492, 2001 https://doi.org/10.1109/ICIPRM.2001.929185
  6. T. Oka, K. Hirata, K. Ouchi, H. Uchiyama, K. Mochizuki, and T. Nakamura, 'Small-Scaled InGaP/GaAs HBT's with Wsi/Ti Base Electrode and Buried $SiO_2$' IEEE Trans. Electron Devices, Vol. 45, No. 11, pp. 2276-2282, 1998 https://doi.org/10.1109/16.726639
  7. M. Hafizi, 'Sub-micron, Fully Self-Aligned HBT with an Emitter Geometry of 0.3 ${\mu}m$,' IEEE Electron Device Letters, vol. 18, pp. 358-360, July 1997 https://doi.org/10.1109/55.596936
  8. H. Masuda, T. Tanoue, T. Oka, A. Terano, M. W. Pierce, K. Hosomi, K. Ouchi, and T. Mozume, 'Novel Self-Aligned Sub-micron Emitter InP/InGaAs HBT's Using T-shaped Emitter Electrode' Proc. InP and Related Materials, pp. 644-647, 1995 https://doi.org/10.1109/ICIPRM.1995.522226
  9. J. Godin, M. Riet, S. Blayac, Ph Berdaguer, J. ?L. Benchimol, A. Konczykowska, A. Kasbari, Ph. Andre, and N. Kauffmann, 'Improved InGaAs/InP DHBT technology for 40 Gbit/s optical communication circuits' Proc. GaAs IC Symposium, pp. 77-80, 2000 https://doi.org/10.1109/GAAS.2000.906296
  10. S. Tadayon, G. Metze, A. Cornfeld, K. Pande, K. H. Huang, and B. Tadayon, 'Application of micro-airbridge isolation in high speed HBT fabrication,' Electronics Letters, vol. 29, no. 1, pp. 26-27, 1993 https://doi.org/10.1049/el:19930017
  11. Shin Hyunchol, C Gaessler, and H. Leier, 'Reduction of base-collector capacitance in InP/InGaAs HBT's using a novel double polyimide planarization process' IEEEElectron Device Letters, vol. 19, pp. 297-299 Aug. 1998 https://doi.org/10.1109/55.704405
  12. Y. Miyamoto, J.M.M Rios, A.G Dentai, and S. Chandrasekhar, 'Reduction of base-collector capacitance by undercutting the collector and subcollector in GaInAs/InP DHBTs,' IEEE Electron Device Letters, vol. 17, pp. 97-99, 1996 https://doi.org/10.1109/55.485179
  13. A. Gutierrez-Aitken, E. Kaneshiro, B. Tang, J. Notthoff, P. Chin, D. Streit, and A. Oki, '69 GHz frequency divider with a cantilevered base InP DHBT,' IEEE IEDM Tech. Dig., pp. 779-782, 1999 https://doi.org/10.1109/IEDM.1999.824266
  14. Moonjung Kim, Taeho Kim, Sookun Jeon, Myounghoon Yoon, Young-Se Kwon, and Kyounghoon Yang, 'Performance of new self-aligned InP/InGaAs HBT's using crystallographically defined emitter contact technology,' Proc. Indium Phosphide and Related Materials, pp. 220-223, 2001 https://doi.org/10.1109/ICIPRM.2001.929097
  15. Bin Li, S. Prasad, Yang Li-Wu, and S.C. Wang, 'Semianalytical Parameter-Extraction Procedure for HBT Equivalent Circuit,' IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1427-1435, Oct. 1998 https://doi.org/10.1109/22.721144
  16. K. Yang, A.L. Gutierrez-Aitken, X. Zhang, P. Bhattacharya, and G.I. Haddad, 'An HSPICE HBT model for InP-based single HBT's,' IEEE Trans. Electron Devices, vol. 43, pp. 1470-1472, Sept. 1996 https://doi.org/10.1109/16.535336
  17. Y. Jeong, Y. Song , S. Choi, and K. Yang, '$F_{max}$ enhancement in InP-based DHBTs using a new lateral reverse-etching technique,' submitted to 15th Inter. Conf. on Indium Phosphide and Related Materials in 2003