Effect of Electric fusion Methods on Cell Fusion Rate and Embryo Development by Somatic Cell Nuclear Transfer in Korean Native Cattle(KNC)

한우 체세포를 이용한 핵이식에서 전기융합 방법이 융합율 및 배발달율에 미치는 영향

  • Published : 2003.12.01

Abstract

This study was conducted to investigate the effect of electric fusion methods on cell fusion rate and embryo development by somatic cell nuclear transfer in Korean Native Cattle. The KNC ear cell was cultured in vitro for confluence in serum starvation condition(DMEM+0.05% FBS) for cell confluence. The zona pellucida of IVM oocytes were partially dissection using micro pipette. Ear cells were transferred into an enucleated oocyte. The reconstructed embryos were electrically fused with Zimmermann Cell Fusion Medium(ZCFM). Nuclear transfer embryos were activated with a combination of 10${\mu}{\textrm}{m}$ calcium ionophore(5 min) and 2.0mM 6-DMAP(3 hr). The activated embryos were cultured in CR1 -aa medium contains 0.3% BSA or 10% FBS at 37$^{\circ}C$, 90% $N_2$, and 5% $CO_2$in incubator for 6 days. The fusion rates were 51.6%(chamber) and 68.9%(needle), respectively and there were significantly difference between the fusion method(P<0.05). But, lysis rates were not significantly different(10.7%, 11.5%), respectively. The cleavage rates were significantly different between the chamber method(73.2%) and needle method(80.3%), respectively(P<0.05). The rates of early embryos(2∼4cells) and blastocysts of chamber and needle methods were 54.1%, 61.1% and 18.4%, 26.3% respectively, and needle method was significantly higher than chamber method(P<0.05). But, morulae formation rate were not significantly differences between the chamber(6.7%) and needle(6.2) method(P <0.05). These result suggest that electric fusion of needle method was to be profitable for nuclear transfer embryo fusion rate, blastocyst formation rate and reduce of oocyte lysis.

복제수정란 생산에 있어서 수핵란 내 체세포 주입 후 전기적인 융합은 필수과정인데, 이 과정을 거치는 동안 많은 수의 체세포 주입 난자가 융합에 실패하거나 lysis가 일어나게 된다. 본 실험에서는 한우 체세포를 이용하여 핵이식을 실시한 후 수핵세포질과 응합을 시도할 때 전기융합 방법에 따른 융합율과 배발달율을 검토하고자 실시하였다. 공여세포는 한우 귀 세포조직을 채취하여 0.05% trypsin과 EDTA가 첨가된 D-PBS로 세포를 분리한 후 DMEM 배양액으로 계대배양을 실시하여 사용하였다. 핵이식을 위하여 체외성숙시킨 난자를 탈핵용 micro pipette을 이용하여 투명대를 절개하고 수핵 난자의 극체 와 핵을 제거한 후 공여세포를 주입하였으며, 핵이식 수정란은 직접, 간접적인 전기적 자극으로 융합을 실시한 후 calcium iono-phore와 6-DMAP를 이용하여 활성화를 유도하였다. 활성화된 수정란은 38.5$^{\circ}C$, 90% $N_2$, 5% $CO_2$로 조정된 배양기에서 처음 3일은 0.3% BSA가 첨가된 CR1-aa 배양액에서, 배양 4일째부터는 10% FBS가 첨가된 CR1-aa 배양액에서 배양을 실시하였다. 본 연구결과를 요약하면 다음과 같다. 전기자극 융합방법에 따른 수핵난자의 융합율과 lysis율은 electric chamber를 이용하여 간접융합을 실시하였을 경우 51.6%와 10.7%를 보였고, needle을 이용하여 직접 융합을 실시하였을 경우 68.9%의 융합율과 11.5%의 lysis율을 보임으로써 needle을 이용한 직접융합 방법이 유의적으로 높은 융합율을 보였다(P<0.05). 융합 후 체외 발달과정을 살펴보면 난할율에 있어서 needle을 이용했을 시 80.3%로 chamber를 이용했을 시 73.2%보다 유의적으로 높은 난할율을 보였다. 초기배 발달단계인 2∼4세포기의 발달율 역시 needle을 사용한 구가 61.1%로 chamber를 사용한 구 54.1%보다 유의적으로 높은 차이를 보였다. 상실배 단계는 chamber를 사용한 구가 6.7%로 needle을 사용한 구 6.2%보다 약간 높았지만 유의적인 차이는 없었다. 하지만 이식 가능한 단계인 배반포배 발달율에 있어서는 needle을 사용하여 융합을 시도한 구가 26.3%로 chamber를 사용한 구 18.4%보다 유의적으로 높은 발달율을 보였다(P<0.05). electric chamber를 이용하여 전기융합을 시도시전류가 흐르는 wire와 주입된 체세포가 직각을 이루도록 정렬을 시키느라 많은 시간이 소요되고, 주입한 체세포가 세포질과 떨어진 난자는 전기자극을 주어도 융합이 일어날 수 없으며, 높은 전압을 사용하기 때문에 융합된 복제란의 lysis가 많이 발생하는게 가장 큰 단점으로 꼽을 수 있다. 하지만 미세조작기와 needle 방법을 이용하면 낮은 전압을 이용하여 융합을 시도하기 때문에 복제란의 lysis를 줄일 수 있고, 전극과 체세포 주입란을 정렬시키는 과정이 생략되어 시간이 절약되며, 결정적으로 주입된 체세포가 세포질과 떨어져 있더라도 미세조작기로 약간의 압력을 가하여 전기자극을 가할 수 있어서 보다 높은 융합율과 배반포배 발달율을 얻을 수 있기 때문에 needle을 이용한 직접적인 전기융합 방법이 체세포 복제수정란 생산에 효과적이라고 사료된다.

Keywords

References

  1. Annelies EP, Wouter G Vanlnzen, Tanja AE and Van Acheterberg Kruip, Theo AM, De Laat Siegfried and Weima Sjerp M, 1993. Nuclear transfer and electrofusion in bovine in vitromatured/ in vitro-fertilized embryos ; Effect of media and electrical fusion parameters, Mol. Reprod. Dev. 36:307-312
  2. CibeIIi JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA and Robl JM. 1998, Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 280: 1256-1258 https://doi.org/10.1126/science.280.5367.1256
  3. First NL, Sims MM, Park SP and Kent-First MJ. 1998, Systems for production of calves from cultured bovine embryonic cells. Reprod. Fert. Dev., 6:553-562 https://doi.org/10.1071/RD9940553
  4. Goto Y, Kaneyama K, Kobayashi S, Imaj K, Shin-Noh M, Tsujino T, Nakano T, Matsud S and Nakane S. 1999. Birth of cloned calves derived from cultured oviductal epithelial cells of a dairy cow(Rapid communication), Anim, Sci., 70:243-245
  5. Kato M, Yamnouchi K, Ikawa M, Okabe M, Naito K and Tojo H. 1999, Efficent selection of transgenic mice embryos using EGFP as a marker gene, Mol. Reprod. Dev., 54:43-48 https://doi.org/10.1002/(SICI)1098-2795(199909)54:1<43::AID-MRD6>3.0.CO;2-N
  6. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H and Tsunoda Y, 1998. Eight calves cloned from somatic cells of a single adult. Science, 282:2095-2098 https://doi.org/10.1126/science.282.5396.2095
  7. Keefer CL, Stice SL and Matthews DL. 1994. Bovine inner cell mass as donor nuclei in the production of nuclear transfer embryos and calves. BioI. Reprod., 50:935-939 https://doi.org/10.1095/biolreprod50.4.935
  8. Koo DB, Choi YH, Park JS, Kim HN, Kang YK, Lee CS, Han YM, Park HD and Lee KK. 2000. In vitro development of bovine nuclear transfer embryos reconstructed with fetal fibroblasts. Korean J. Animal Reprod., 24(4):407-417
  9. Lavoir MC, Rumph N, Moens A, King WA, Plante Y, Tohnson WH, Ding J and Betteridge KJ 1997. Development of bovine nuclear transfer embryos made with oogonia. Bio. Reprod., 56: 194-199 https://doi.org/10.1095/biolreprod56.1.194
  10. Li guang-peng, Chen da-yuan, Lian Ii, Han zhiming,Zhuzi-yu and Georgee Seidel Jr. 2002.Rabbit cloning ; Improved fusion rates using cytochalasin B in the fusion buffer. Mol. Reprod. Dev.,61:187-191 https://doi.org/10.1002/mrd.1146
  11. Mitani T, Utsumi K and lritani A. 1993. Developmental ability of enucleated bovine oocytes matured in vitro after fusion with single blastomeres of eight-cell embryos matured and fertilized in vitro. Mol. Reprod. Dev., 34:314-322 https://doi.org/10.1002/mrd.1080340312
  12. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scoot AR, Ritchie M, Wilmut I, Colman A and Campbell KHS. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 278:2130-2133 https://doi.org/10.1126/science.278.5346.2130
  13. Sowers AE. 1989. The mechanism of electroporation and electrofusion in erythrocyte membranes. In 'Electroportation and electrofusion in cell biology'(E. Neuman, A.E. Sowers, and C.A. Jordan, eds.), Plenum Press, New York. pp. 229-256
  14. Tatham, BG, Giliam, KJ and Trounson, AG. 1996. Electrofusion parameters for nuclear transfer predicted using isofusion contours produced with bovine embryonic cells. Mol. Reprod. Dev., 43:306-312 https://doi.org/10.1002/(SICI)1098-2795(199603)43:3<306::AID-MRD4>3.0.CO;2-U
  15. Tsunoda Y, Kato Y and Shioda Y. 1987. Electrofusion for the pronuclear transplantation of mouse eggs. Gamete Research, 17:15-20 https://doi.org/10.1002/mrd.1120170103
  16. Vignon X, Chesne P, LeBourhis D, Heyman Y and Renard JP. 1998. Developmental potential of bovine embryos reconstructed with somatic muclei from cultured skin and muscle fetal cells. Theriogenology, 49:392 https://doi.org/10.1016/S0093-691X(98)90745-2
  17. Wakayama T, Perry ACF, Zuccotti M, Johnson KR and Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cummulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  18. Wells David, Palva M, Misica H, Robin T and William H Vivanco. 1998. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby island cattle bree. Reprod. Fertil. Dev., 10:369-378 https://doi.org/10.1071/R98109
  19. Wells DN, Misica PM, Day AM and Tervit HR. 1997. Production of cloned lams from an established embryonic cell line: A comprairson between in vivo- and in vitro matured cytoplasts. BioI. Reprod., 57:385-393 https://doi.org/10.1095/biolreprod57.2.385
  20. Wells DN, Misica PM and Tervit HR. 1999. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. BioI. Reprod., 60:996-1005 https://doi.org/10.1095/biolreprod60.4.996
  21. Wilmut I, Schnieke AE, McWhir J, Kind AJ and Campbell KHS. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385:810-813 https://doi.org/10.1038/385810a0
  22. Wiemer KE, Waston AJ, Polanski V, McKenna AI, Fick GH and Schultz GA. 1991. Effects of maturation and co-culture treatments on the developmental capacity of bovine embryos., Mol. Reprod. Dev., 30:330-338 https://doi.org/10.1002/mrd.1080300407
  23. Zakhartchenko V, Schernthaner WP, Brem G and Wolf E. 1997. Karyoplast -cytoplast volume ration in bovine nuclear transfer embryos; Effect on development potential. Mol. Reprod. Dev., 48:332-338 https://doi.org/10.1002/(SICI)1098-2795(199711)48:3<332::AID-MRD5>3.0.CO;2-S
  24. Zakhartchenko V, Schernthaner W, Prelle K, Stojkovic P, Brem G and Wolf E. 1999a, Nuclear transfer in the bovine embryo : Developmental potential of cultured adult cells. Theriogenology, 51:218 https://doi.org/10.1016/S0093-691X(99)91777-6
  25. Zakhartchenko V, Durcova-Hills G, Stojkovic M, Schernthaner W, Prelle K, Steinborn R, Muller M, Brem G and Wolf E. 1999b. Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts, J. Reprod. Fertil., 115:325-331 https://doi.org/10.1530/jrf.0.1150325
  26. Zakhartchenko V, Wolf E, Palma GA and Brem G. 1995. Effect of donor embryo cell number and cell size on the efficiency of bovine embryo cloning. Mol. Reprod. Dev., 42:53-57 https://doi.org/10.1002/mrd.1080420107
  27. Zimmermann U and Vienken J. 1982. Electric fieldinduced cell to cell fusion. J. Membrane Bio., 67:165-182 https://doi.org/10.1007/BF01868659