Effects of Oil Contamination Levels and Microbial Size on Hydrocarbon Biodegradation.

원유오염농도와 미생물 농도가 탄화수소의 생분해에 미치는 영향

  • 백경화 (한국생명공학연구원 환경생명공학연구실) ;
  • 김희식 (한국생명공학연구원 환경생명공학연구실) ;
  • 이인숙 (이화여자대학교 생명과학과) ;
  • 오희목 (한국생명공학연구원 환경생명공학연구실) ;
  • 윤병대 (한국생명공학연구원 환경생명공학연구실)
  • Published : 2003.12.01

Abstract

The purpose of this study was to evaluate the Influence of oil concentration and inoculum size on petroleum biodegradation in soil by Nocardia sp. H17-1, isolated from oil-contaminated soil. To investigate the effect of initial oil concentration on total petroleum hydrocarbon (TPH) degradation, the soil was artificially contaminated with 10, 50 or 100 g of Arabian light oil per kg of soil, respectively. After 50 days, Nocardia sp. H17-1 degraded 78,94 and 53% of the each initial TPH concentration, respectively. Also, it produced 1.35, 4.21, and 5.91 mmol of $CO_2$ per g of soil, respectively. The degradation rate constant (k) of TPH was decreased in proportion to the initial oil concentrations while $CO_2$ production was increased with the concentration. The growth of Nocardia sp. H17-1 was remarkably inhibited when it was inoculated into soil containing 100 g of oil per kg of soil. To evaluate the effect of the inoculum size, the soil was artificially contaminated with 50 g of Arabian light oil per kg of soil, and inoculated with $3${\times}$10^{6}$ , $5${\times}$10^{7}$ , $2${\times}$10^{8}$ cells per g of soil, respectively. After 50 days, the degradation of TPH was remained with similar in all treatment but degradation rate constant (k) and evolved $CO_2$ was increased with increasing the inoculum size.

오염토양에 유류분해능을 가진 Nocardia sp. H17-1의 접종시 고려되어야 할 인자중 하나인 초기 오염농도에 의한 탄화수소분해능과 초기 접종농도에 의한 분해능 및 균주의 생육을 조사하였다. H17-1은 실험 50일 동안 초기 오염농도 10, 50, 100 g Arabian light oil/kg of soil에 대해 각각 78.5%, 94.3%, 53.2%의 탄화수소를 제거하였으며, 오염농도가 높을수록 분해속도 상수(k) 낮아졌다. $CO_2$의 생성량 또한 오염농도가 높을수록 증가하였으나, 100 g/kg-soil의 오염농도에서는 균의 생육이 저해를 받는 것으로 나타났다. H17-1의 초기 접종농도에 의한 영향은 균의 접종량에 따라 최종 남은 TPH의 양은 큰 차이를 나타내지 않았으나, 분해속도상수(k)는 균의 접종량이 늘어남에 따라 크게 증가되었으며, $CO_2$의 생성량 또한 균의 접종농도에 따라 증가하였다.

Keywords

References

  1. Kor. J. Biotechnol. Bioeng. v.11 원유 분해균주 Nocardia sp. H17-1의 분리 및 특성 이창호;권기석;김희식;서현효;안극현;권태종;윤병대
  2. Biodegradation and bioremediation Kinetics Alexandr,M.;M.Alexander (2nd ed.)
  3. Microbiol . Rev. v.45 Microbial degradations of petroleum hydrocarbons:An environmental perspectives Atlas,R.M.
  4. Advances in Microbial Ecology v.12 Hydrocarbon biodegradation and oil spill bioremediation Atlas,R.M.;R.Bartha;K.Marshall(ed.) https://doi.org/10.1007/978-1-4684-7609-5_6
  5. Adv. Appl. Microbiol v.22 The microbiology of aquatic oil spill Bartha,R.;R.M.Atlas https://doi.org/10.1016/S0065-2164(08)70164-3
  6. Environ. Microbiol. v.2 Ecological study of bioaugementation failure Bouchez,T.;D.Patureau;P.Dabear;S.Juretschko;J.Dore;P.Delgenes;R.Moletta;M.Wagner https://doi.org/10.1046/j.1462-2920.2000.00091.x
  7. Environ. Pollu. v.110 Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment Del'Aroc,J.P.;F.P de Franca
  8. Appl. Environ. Microbiol v.37 Effect of environmental parameters on the biodegradation of oil sludge Dibble,J.T.;R.Bartha
  9. J. Chromato v.A809 Comparison of oil composition changes due to biodegradation and physical weathering in different oils Foght,K.S.;D.W.S.Westlake
  10. Bioaugmentation for site remediation Bioremediation: when is bioaugmentation needed? Forsyth,J.V.;T.M.Tsao;R.D.Bleam;R.E.Hinchee;J.fredrickson;B.C.Alleman(ed.)
  11. Appl. Environ. Microbiol v.50 Reasons for possible failure of inoculation to enhance biodegradation Goldstein,R.M.;L.M.Mallory;M.Alexander
  12. Appl. Environ. Microbiol. v.60 Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil Knaebel,D.B.;T.W.Federle;D.C.Mcaboy;J.R.Vestal
  13. Appl. Microbiol. Biotechnol. v.51 Bioavaliability of hydrocarbons during microbial remediation of a snady soil Loser,H.;H.Seidel;P.Hoffman;A.Zehndorf https://doi.org/10.1007/s002530051370
  14. Appl. Microbial Biotechnol v.35 Factors affecting the microbial degradation of phenanthrene in soil Manial,V.B.;M.Alexander
  15. Chemosphere v.40 Monitoring of bioremediation by soil biological activities Margesin,R.;A.Zimmerbauer;F.Schinner https://doi.org/10.1016/S0045-6535(99)00218-0
  16. Appl. Environ. Microbiol. v.67 Bioremediation(natural attenuation and biostimulation)of diesel-oil-contaminate soil in an Alpine Glacier skiing area Margensin,R.;F.Schinner https://doi.org/10.1128/AEM.67.7.3127-3133.2001
  17. Microbiol. Ecol. v.20 Biodegradation of pentachlorphenol in natural soil by inoculated Rhodococcus chlorophenolicus Middeldrop,P.J.M.;M.Briglia;M.S.Salkinoja-Salonen https://doi.org/10.1007/BF02543872
  18. Appl. Environ. Microbiol. v.67 Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil Mishra,S.;J.Jyot;R.C.Kuhad;B.Lal https://doi.org/10.1128/AEM.67.4.1675-1681.2001
  19. Bull. Environ. Contam. Toxicol. v.54 Inhibitory effects on degradation of diesel oil in soil microcosm by commercial bioaugementation product Moller,J.;H.Gaarn;T.Steckel;E.B.Wedebye;D.Westermann
  20. Appl. Environ. Microbiol v.31 Microbial degradation of oil spills enhanced by a slow-release fertilizer Olivieri,R.P.;A.Bacchin;N.Robertiello;L.O.Degen;A.Tonolo
  21. Appl. Environ. Microbiol v.56 Inoculum size as a factor limiting success of inoculation for bioremediation Ramadan,M.A.;O.M.El-Tayber;M.Alexander
  22. Chemosphere v.51 Inoculation of an atrazinedegrading strain. Chelatobacter heintzii Cit1, in four different soils: effect of different inoculation densities Rousseaux,S.;A.Hartmann;B.Lagacherie;S.Piutti;F.Andreux;G.Soulas
  23. Environ. Sci. Technol v.31 Physiolocigal properties and biodegradation of crude oil Sugiura,K.;M.Ishihara;T.Shimaichi;S.Harayama https://doi.org/10.1021/es950961r
  24. Curr. Opin. Biotechnol. v.7 Bioaugemention as a soil bioremediation approach Vogel,T.M. https://doi.org/10.1016/S0958-1669(96)80036-X