Immobilization of Cyclodextrin Glucanotransferase for Production of 2-O-\alpha-D-Glucopyranosyl L-Ascorbic Acid.

2-O-\alpha-D-Glucopyranosyl L-Ascorbic acid 생산을 위한 Cyclodextrin glucanotransferase의 고정화

  • 성경혜 (부산대학교 생명과학부) ;
  • 김성구 (부경대학교 식품생명공학부) ;
  • 장경립 (부산대학교 생명과학부) ;
  • 전홍기 (부산대학교 생명과학부)
  • Published : 2003.12.01

Abstract

Cyclodextrin glucanotransferase (CGTase) from Paenibacillus sp. JB-13 was immobilized on various carriers by several immobilization methods such as ionic binding, covalent linkage and ultrafiltration to improve the process performance. The ultrafiltration and covalent linkage with CNBr-activated sepharose 4B were found as the best method for immobilization of CGTase. The ability of CGTase immobilization onto CNBr-activated sepharose 4B was as high as 18,000 units/g resin when the conditions was as follows: contact time 9 hrs at $37^{\circ}C$, pH 6.0, 100 nm and enzyme loading 24,000 units/g resin. The optimum conditions for production of 2-O-$\alpha$-D-Glucopyranosyl L-Ascorbic acid by immobilized CGTase turned out to be: pH 5.0, temperature $37^{\circ}C$, 20% substrate solution containing 8% (w/v) of soluble starch and 12% (w/v) of L-ascorbic acid sodium salt, 100 rpm, far 25 hrs and with 800 units of immobilized CGTase/ml substrate solution. Moreover the CGTase activity could be stably maintained for 8 times of repetitive reactions after removing products by ultrafiltration through YM 10 membrane.

AA를 AA-2G로 전환하는 CGTase를 고정화하여 AA-2G 대량 생산의 가능성을 고찰한 결과, CNBr-sepharose 4B가 가장 효과적인 담체로 판명되었고, CGTase의 고정화 최적 조건과 고정화 CGTase에 의한 AA-2G 생산의 최적조건 및 재사용성을 검토하였다. 최적 고정화 조건은 효소량 24,000 units/g resin으로 9시간 반응하여 약 18,000 units/g resin의 최고 고정화율을 얻을 수 있으며, pH 5.0(50 mM sodium citrate buffer)용액에 12% AA-Na와 8% soluble starch를 기질로 하여 800 units/ml의 고정화 CGTase를 첨가한 후 $37^{\circ}C$에서 100 rpm으로 교반하면서 25시간 반응하여 약 18 mM의 AA-2G 최고량을 얻을 수 있었다. 또한 0.015 mM의 $CaCl_2$를 첨가하여 고정화 CGTase의 재사용성을 관찰한 결과, 5회까지 50% 이상의 AA-2G 생산율로서 그 가능성을 입증할 수 있었다. 그리고 효소의 재사용성이란 측면에서, 본 고정화의 다른 한 방법인 ultrafiltration(한외 여과)에 의해서는 Millipore사의 YM 10 membrane을 이용하여 먼저 단백질량과 효소 활성 변화를 측정하여 그 가능성을 확보할 수 있었으며, 기질 20 ml을 사용하여 AA-2G를 생성시킨 후, 한외여과에 의해 효소만을 회수하여 연속 반응해 본 결과 8회까지 50%의 생성률을 유지하였다. 따라서 한외 여과는 CNBr-sepharose 4B와 함께 효율적인 고정화의 한 방법으로 판명되었으며, 앞으로 이들 고정화 효소를 이용한 연속 반응 시스템의 구축이 뒤따라야 할 것이다.

Keywords

References

  1. Kor. J. Food Sci. Technol v.29 Immobilization of transglucosidase from Aspergillus niger Ahn,J.W.;K.W.Park;J.H.Seo
  2. Kor. J. Food Sci. Technol v.30 Comparison of kinetic parameters, pH and thermal properties of soluble and immobilized transglucosidase from Aspergillus niger Ahn,J.W.;K.W.Park;J.H.Seo
  3. J. Micobiol. Biotechnol. v.11 Purification and properties of cyclodextrin glucanotransferase synthesizing 2-O-$\alpha$-D-glucopyranosyl L-ascorbic acid from Paenibacillus sp. JB-13 Bae,K.M.;S.K.Kim;I.S.Kong;H.K.Jun
  4. Science v.173 Ascorbate sulfate: a urinary metabolite of ascorbic acid in man Baker,E.M.;D.C.Hammer;S.C.March;B.M.Tolbert;J.E.Canham https://doi.org/10.1126/science.173.3999.826
  5. Immobilized biocatalyst Chibata,I.
  6. Antiviral. Res v.27 In vitro inhibition of human cytomegalovirus replication in human foreskin fibroblasts and endothelial cells by ascorbic acid 2-phosphate Cinatl,J.;C.Jaroslav;W.Bernard;R.Holger;O.G.Hermann;C.Jean-Francois;S.Martin;E.Albrecht;W.D.Hans https://doi.org/10.1016/0166-3542(95)00024-G
  7. Methods in Enzymology v.44 Kinetic behavoir of immobilized enzyme systems Goldstein,L.;Mosbach,K.(ed.) https://doi.org/10.1016/S0076-6879(76)44031-4
  8. Argic. Biol. Chem v.55 Synthesis of 2-O-α-D-glucopyranosyl L-ascorbic acid by cyclomaltodextrin glucanotransferase from Bacillus stearothermophilus Hajime,A.;Y.Masaru;S.Shuzo;Y.Itaru https://doi.org/10.1271/bbb1961.55.1751
  9. Circulation v.97 Viramin C improves endothelial function of conduct arteries in patients with chronic heart failure Hornig,B.;A.K.Naoshi;Christoph;D.Helmut https://doi.org/10.1161/01.CIR.97.4.363
  10. Biochim Biophys Acta. v.320 Abiliary metabolite of ascorbic acid in normal and hypophysectoomized rats Horning,D.;H.E.Gallo-Torres;H.Weiser https://doi.org/10.1016/0304-4165(73)90134-7
  11. Clin. Nucl. Med. v.23 The usefulness of Tc-99 m pertechnetate imaging with vitamin C stimulation in Warthin's tumor Ikeda,K.;S.K.Ha-Kawa;A.Nakamura;T.Yamashita;Y.Tanaka https://doi.org/10.1097/00003072-199802000-00009
  12. Kor. J. Appl. Microbiol. Biotechnol v.25 Immobilization of cyclodextrin glucotransferase and its reaction characteristics regarding transglucosylated stevioside production In,M.J.;D.C.Kim;H.J.Chae;K.S.Choi;M.H.Kim
  13. J. Appl. Biochem v.5 Immobilization of starch degrading enzymes Ⅰ. A comparative study on soluble and immobilized cyclodextrin glycosyltransferase Ivony,K.;B.Szajni;G.Seres
  14. Biotechnol. Bioeng. v.26 Immobilized cyclodextrin glucanotransferase of alkalophilic Bacillus sp. No. 38-2 Kato,T.;K.Horikoshi https://doi.org/10.1002/bit.260260606
  15. Bioprocess Eng. v.5 Immobilization of cyclodextion clucanotransferase on Amberlite IRA-900 for biosynthesis of Transglycosylated xylitol Biotechnol. Kim,P.S.;H.D.Shin;J.K.Park;Y.H.Lee https://doi.org/10.1007/BF02936590
  16. Agric. Biol. Chem v.38 Purification and some properties of cyclodextrin glycosyltransferase from a strain of Bacillus species Kitahata,S.;N.Tsuyama;S.Okada https://doi.org/10.1271/bbb1961.38.387
  17. J. Microbiol. Biotechnol. v.1 Evaluation of immobilization methods for cyclodextrin glucanotransferase and characterization of its enzymatic properties Lee,Y.H.;S.H.Lee;H.D.Shin
  18. Mayo. Clin. Health Lett v.16 More evidence that vitamin C may help prevent cataracts Manchester,K.
  19. Biochemistry v.8 The occurrence of ascorbic acid sulfate in brine shrimp, Artemia salina Mead,C.G.;F.J.Finamore https://doi.org/10.1021/bi00834a060
  20. Vitamin v.41 Chemistry and application of ascorbic acid phosphate Mima,H.;H.Nomura;Y.Imai;H.Takashima
  21. Biotechnol. Bioeng v.19 Production of schardinger β-dextrin by soluble and immobilized cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Nakamura,N.;K.Horikoshi https://doi.org/10.1002/bit.260190108
  22. J. Ferment. Bioeng v.77 Immobilization of cyclodextrin glucanotransferase on capillary membrane Okada,T.;M.Ito;K.Hibino https://doi.org/10.1016/0922-338X(94)90230-5
  23. The American Chemical Society Ascorbic acid, chemistry, metabolism and uses in Advances in Chemistry Series 200 Seib,P.A.;B.M.Tolbert
  24. Korean J. Biotechnol. Bioeng v.15 Production of glucosyl-xylitol using encapsulated whole cell CGTase Park,J.K.;H.W.Park;Y.H.Lee https://doi.org/10.1002/9783527620968.ch2
  25. Proc. Soc. Exp. Biol. Med. v.217 Ocular oxidants and antioxidant protection Rose,R.C.;S.P.Richer;A.M.Bode https://doi.org/10.3181/00379727-217-44250
  26. Cancer Detect Prev. v.20 Inhibition of hepatocellular carcinoma developement and erythrocyte polyamine levels in ODS rats fed on 3-methyl-4-dimethylaminoazoben-zene by hemicalcium ascorbate, 2-O-octadecylascorbic acid, and ascorbyl palmitate Shimpo,K.;H.Takahashi;H.Tsuda;T.Hibino;K.Kawai;C.Kimura;T.Nagatsu;K.Fujita
  27. J. Clin. Epidemiol v.51 Ascorbic acid supplement use and the prevalence of gallbladder disease Simon,J.A.;D.Grady;M.C.Snabes;J.Fong;D.B.Hunninghake https://doi.org/10.1016/S0895-4356(97)80280-6
  28. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol v.118 Effect of dietary ascorbic acid on the hepatic microsomal moxed function oxidase system in liver of chicks treated with Escherichia coli lipopolysacchardie. Comp. Takahashi,K.;A.Yukio;T.Keiji https://doi.org/10.1016/S0742-8413(97)00166-7
  29. Enzyme Micob. Technol v.22 Bacterial cyclodextrin glucanotransferase Tonkova,A. https://doi.org/10.1016/S0141-0229(97)00263-9
  30. J. Nutr. v.122 Collagen synthesis in human skin fibroblasts is stimulated by a stable form of ascorbate, 2-O-α-D-glucopyranosyl-L-ascorbic acid Yamamoto,I.;N.Muto;K.Murakami;J.Akiyama
  31. Int. J. Immunopharmacol v.15 Enhancement of in vitro antibody production of murine splenocytes by ascorbic acid 2-O-α-glucoside Yamamoto,I.;M.Tanaka;N.Muto https://doi.org/10.1016/0192-0561(93)90042-W
  32. Int. J. Immunopharmacol. v.15 Enhancement of in virto antibody production of murine splenocytes by ascorbic acid 2-O-$\alpha$-glucoside Yamamoto,I.;M.Tanaka;N.Muto https://doi.org/10.1016/0192-0561(93)90042-W