참고문헌
- WO9530744 Lipases with improved surfactant resistance Aehle,W.;G.Gerritse;H.B.M.Lenting
- EP407225 Enzymes and enzmatic detergent compositions Batenburg,A.M.;M.R.Egmond;L.G.J.Frenken;C.T.Verrips
- Nature v.343 A serine protease triad forms the catalytic center of a triacylglycerol lipase Brady,L.;A.M.Brzozowski;Z.S.Derewenda;E.Dodson;G.Dodson;S.Tolley;J.P.Turkenburg;L.Christiansen;B.Huge-Jensen;L.Norskov https://doi.org/10.1038/343767a0
- J. Mol. Biol. v.227 The crystal and molecular structure of the Rhizomucor miehei triglyceride lipase at 1.9 resolution Derewenda,Z.S.;U.Derewenda;G.G.Dodson https://doi.org/10.1016/0022-2836(92)90225-9
- Nat. Struct. Biol v.1 An unusual buried polar cluster in a family of fungal lipases Derewenda,U.;L.Swenson;R.Green;Y.Wei;G.G.Dodson(et al.) https://doi.org/10.1038/nsb0194-36
- J. Lipid Res. v.35 Conformational lability of lipases observed in the absence of an oil-water interface-crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar Derewenda,U.;L.Swenson;Y.Y.Wei;R.Green;P.M.Kobos(et al.)
- J Biol Chem v.270 Human hepatic and lipoprotein lipase:the loop covering the catalytic site mediates lipase substrate specificity Dugi,K.A.;H.L.Dickek;S.Santamarina-Fojo
- Engineering of/with Lipases, NATO ASI Series, Series E: Applied Sciences v.317 Strategies and design of mutations in lipases Egmond,M.R.;J. de Vlieg;H.M.Veheij;G.H. de Haas;F.X.Malcata(ed.)
- WO9100920 Process for preparing a protein by a fungus transformed by multicopy integration of an expression vector Giuseppin,M.L.F.;M.T.S.Lopes;R.J.Planta;J.M.A.Verbakel;C.T.Verrips
- US5389536 Lipase from Pseudomonas mendocina having cutinase activity Gray,G.L.;S.D.Scott;A.J.Ayrookaran
- J. Biol. Chem. v.268 Insights into interfacial activation from an open structure of Candida rugosa lipase Grochulski,P.;Y.Li;J.D.Schrag;F.Bouthillier;P.Smith(et al.)
- Protein Sci. v.3 Two conformational states of Candida rugosa lipase Grochulski,P.;Y.Li;J.D.Schrag;M.Cygler https://doi.org/10.1002/pro.5560030111
- Tetrahedron Lett. v.36 Inversion of enantioselectivity in hydrolysis of 1,4-dihydropyridines by point mutation of lipase PS Hirose,Y.;K.Karija;Y.Nakanishi;Y.Kurono;K.Achiwa https://doi.org/10.1016/0040-4039(94)02454-J
- J. Protein Chem. v.14 Probing the function role of E87 and W89 in the lid of Humicola lanuginosa lipase through transesterification reactions in organic solvent Holmquist,M.;I.G.Clausen;S.A.Patkar;A.Svendsen;K.Hult https://doi.org/10.1007/BF01886762
- Biochemistry v.36 Identification of residues essential for differential fatty acyl specificity of Geotrichum candidum lipases Ⅰand Ⅱ Holmquist,M.;D.C.Tessier;M.Cygler https://doi.org/10.1021/bi971390d
- Annu.Rev. Microbiol. v.53 Bacterial biocatalysis: molecular biology three-dimensional structures, and biotechnological applications of lipases Jaeger,K.E.;B.W.Dijkstra;M.T.Reetz https://doi.org/10.1146/annurev.micro.53.1.315
- FEMS Microbiol. Rev. v.15 Bacterial lipases Jaeger,K.E.;S.Ransac;B.W.Dijkstra;C.Colson;M.van Heuvel;O.Misset https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
- J. Biol. Chem. v.277 Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase Jeong,S.T.;H.K.Kim;S.J.Kim;S.W.Chi;J.G.Pan;T.K.Oh;S.E.Ryu https://doi.org/10.1074/jbc.M200640200
- Lipids v.29 Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis Joerger,R.D.;M.J.Haas https://doi.org/10.1007/BF02537305
- Acta Crystallogr v.D58 Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution Kawasaki,K.;H.Kondo;M.Suzuki;S.Ohgiya;S.Tsuda
- Structure v.5 The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor Kim,K.K.;H.K.Song;D.H.Shin;K.Y.Hwang;S.W.Suh https://doi.org/10.1016/S0969-2126(97)00177-9
- Structure v.5 Crystal structure of carboxylesterase from Pseudomonas fluorescens, an α/β hydrolase with broad substrate specificity Kim,K.K.;H.K.Song;D.H.Shin;K.Y.Hwang;S.Choe(et al.) https://doi.org/10.1016/S0969-2126(97)00306-7
- Enzyme Microb. Technol. v.22 Characterization and enantioselectivity of a reconbinant esterase from Pseudomonas fluorescens Krebsfanger,N.;F.Zocher;J.Altenbuchner;U.T.Bornscheuer https://doi.org/10.1016/S0141-0229(98)00004-0
- Chem. Phys. Lipids v.93 Structural investigations of the regio and enantioselectivity of lipases Lang,D.A.;B.W.Dkjkstra https://doi.org/10.1016/S0009-3084(98)00035-8
- J. Mol. Biol v.259 Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 resolution Lang,D.;B.Hofmann;L.Haalck;H.J.Hecht;F.Spener(et al.)
- Eur. J. Biochem v.254 Structural basis of the chiral selectivity of Pseudomonas cepacia lipase Lang,D.A.;M.L.M.Mannesse;G.H.de Haas;H.M.Verheij;B.W.Dijkstra https://doi.org/10.1046/j.1432-1327.1998.2540333.x
- Proc. Natl. Acad. Sci. USA v.90 Gene organisation and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase from Moraxella TA114, an antarctic bacterium Langin,D.;H.Laurell;L.S.Holst;P.Belfrage;C.Holm https://doi.org/10.1073/pnas.90.11.4897
- Biochim. Biophys. Acta v.1441 Structure-activity of cutinase a small lipolytic enzyme Longhi,S.;C.Cambillau https://doi.org/10.1016/S1388-1981(99)00159-6
- Mol. Membr. Biol. v.14 A novel family of channel-forming, autotransporting, bacterial virulence factors Loveless,B.J.;J.M.H.Saier https://doi.org/10.3109/09687689709048171
- Methods Enzymol v.284 Site-specific mutagenesis of human pancreatic lipase Lowe,M.E. https://doi.org/10.1016/S0076-6879(97)84010-4
- Biochemistry v.34 Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogs-effect of acyl-chain length and position in the substrate molecule on activity and enantiose-lectivity Mannesse,M.L.M.;R.C.Cox;B.C.Koops;H.M.Verheij;G.H. de Haas;M.R.Egmond;H.T.W.M.Vanderhijden;J. de Vlieg https://doi.org/10.1021/bi00019a020
- Nature v.356 Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent Martinez,C.;P.de Geus;M.Lauwereys;M.Matthyssens;C.Cambillau https://doi.org/10.1038/356615a0
- J. Biol. Chem. v.275 Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family Ⅰ.1 of bacterial lipases Nardini,M.;D.A.Lang;K.Liebeton;K.E.Jaeger;B.W.Dijkstra https://doi.org/10.1074/jbc.M003903200
- FEBS Lett. v.331 The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate Noble,M.E.M.;A.Cleasby,L.K.;Johnson,M.R.;Ehmond;L.G.J.Frenken https://doi.org/10.1016/0014-5793(93)80310-Q
- Protein Eng v.5 The α/β hydrolase fold Ollis,D.L.;E.Shea;M.Cygler;B.Dijkstra;F.Frolow(et al.) https://doi.org/10.1093/protein/5.3.197
- FEBS Lett v.403 Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase:apparent residues of the catalytic triad Osterlund,T.;J.A.Contreras;C.Holm https://doi.org/10.1016/S0014-5793(97)00063-X
- Chem. Phys. Lipids v.93 Effect of mutations in Candida antarctica B lipase Patker,S.A.;J.Vind;E.Kelstrup;M.W.Christensen;A.Svendsen;K.Borch;O.Kirk https://doi.org/10.1016/S0009-3084(98)00032-2
- J. Biotechnol v.66 Protein engineering the surface of enzymes Petersen,S.B.;P.H.Jonson;P.Fojan;E.I.Petesen;M.T.N.Petersen;S.Hansen;R.J.Ishak;E.Hough https://doi.org/10.1016/S0168-1656(98)00153-9
- EP375102 Enzymatic peracid bleaching system with modified enzyme Poulose,A.J.;S.A.Anderson
- Top. Curr. Chem. v.200 Superior biocatalysts by directed evolution Reetz,M.T.;K.E.Jaeger https://doi.org/10.1007/3-540-68116-7_2
- Angew. Chem. Ed. Engl. v.36 Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution Reetz,M.T.;A.Zonta;Z.K.Schimossek;K.Liebeton;K.E.Jaeger https://doi.org/10.1002/anie.199728301
- Methods Enzymol v.1284 Lipases and /hydrolase fold Schrag,J.D.;M.Cygler
- Structure v.5 The open conformation of a Pseudomonas lipase Schrag,J.D.;Y.Li;M.Cygler;D.Lang;T.Burgdorf(et al.) https://doi.org/10.1016/S0969-2126(97)00178-0
- Nature v.351 Ser-His-Glutriad forms the catalytic site of the lipase from Geotrichum candidum Schrag,J.D.;Y.Li;S.Wu;M.Cygler https://doi.org/10.1038/351761a0
- Protein Eng v.8 Redesigning the active site of Geotrichum candidum lipase Schrag,J.D.;T.Vernet;L.Laramee;D.Y.Thomas;A.Recktenwald(et al.) https://doi.org/10.1093/protein/8.8.835
- Protein Eng. v.11 Rational design of Rhizopus oryzea lipase with modified stereoselectivity toward triradylglycerols Scheib,H.;J.Pleiss;P.Stadler;A.Kovac;A.P.Potthoff;L.Haalck;F.Spener;F.Paltauf;R.D.Schmid https://doi.org/10.1093/protein/11.8.675
- Biochem. Soc. Trans. v.25 Bacillus thermocatenulatus lipase:a thermoalkalophilic lipase with interesting properties Schmidt-Dannert,C.;M.L.Rua;S.Wahl;R.D.Schmid
- Biochemistry v.36 Dessecting the catalytic mechanism of staphylococcal lipases: chain length selectivity, interfacial activation and cofactor depedence Simons,J.W.F.A.;J.W.P.Boots;M.P.Kats;A.J.Soltboom;M.R.Egmond;H.M.Verheij https://doi.org/10.1021/bi9713714
- WO9205249 Lipase varients Svendsen,A.;I.G.Clausen;S.A.Patkar;E.Gormsen
- WO9311254 protease-stable proteins Svendsen,A.;I.G.Clausen;S.A.Patkar;E.Gormsen
- WO9425577 lipase varients Svendsen,A.;I.G.Clausen;S.A.Patkar;E.Gormsen
- Biochim. Biophys. Acta v.1256 Lipase from Chromobacterium viscosum:biochemical characterization indicating homology to the lipase from Pseudomonas glumae Taipa,M.A.;K.Liebeton;J.V.Costa;J.M.S.Cabral;K.E.Jaeger https://doi.org/10.1016/0005-2760(95)00052-E
- Chem. Rev. v.95 Lipase-supported synthesis of biologically active compounds Theil,F. https://doi.org/10.1021/cr00038a017
- J. Mol. Biol v.32 Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1 Tyndall,J.D.A.;S.Sinchaikul;L.A.Fothergill-Gilmore;P.Taylor;M.D.Walkinshaw
- Structure v.2 The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica Uppenberg,J.;M.T.Hansen;S.Patkar;T.A.Jones https://doi.org/10.1016/S0969-2126(00)00031-9
- Trends Biochem. Sci. v.20 A new family of lipolytic enzymes Upton,C.;J.T.Buckley https://doi.org/10.1016/S0968-0004(00)89002-7
- WO9425578 New lipase varients for use in detergent applications Van der Laan,J.M.;H.B.M.Lenting;L.J.S.M.Mulleners;M.M.J.Cox
- Chem. Phys. Lipids v.93 The phospholipase activity of Staphylococcus hyicus lipase strongly depends on a single Ser to Val mutation van Kampen,M.D.;J.W.F.A.Simons;N.Dekker;M.R.Egmond;H.M.Verheij https://doi.org/10.1016/S0009-3084(98)00027-9
- J. Mol. Biol. v.309 The crystal structure of Bacillus Subtilis lipase: a minimal / Hydrolase Fold Enzyme van Pouderoyen,G.;T.Eggert;K.E.Jaeger;B.W.Dijkstra https://doi.org/10.1006/jmbi.2001.4659
- Nat. Struct. Biol v.2 A novel variant of the catalytic triad in the Streptomyces scabies esterase Wei,Y.;J.L.Schottel;U.Derewenda;L.Swenson;S.Patkar;Z.S.Derewenda https://doi.org/10.1038/nsb0395-218
- Structure v.6 Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 resolution Wei,Y.;L.Swenson;C.Castro;U.Derewenda;W.Minor(et al.) https://doi.org/10.1016/S0969-2126(98)00052-5
- Nature v.343 Structure of human pancreatic lipase Winkler,F.K.;A.D'Arcy;W.H.unziker https://doi.org/10.1038/343771a0
- WO9514783 Lipase gene and varient lipase Yoneda,T.;Y.Miyota;K.Ohno;J.Sasuga