Molecular Structures and Catalytic Mechanism of Bacterial Lipases.

세균성 리파제의 분자구조와 작용기작

  • Published : 2003.12.01

Abstract

Bacteria produce lipases, which can catalyze both the hydrolysis and the synthesis of long chain triglycerides. These reactions usually proceed with high regioselectivity and enantioselectivity, and, therefore, lipases have become very important biocatalysts used in organic chemistry. 3D lipase structures were solved from several bacterial lipases. They have an $\alpha/\beta$ hydrolase fold and a catalytic triad consisting of a nucleophilic serine, and an aspartate or glutamate residue that is hydrogen bonded to a histindine. Active sites are covered with $\alpha$-helical lid structure, of which movement is involved in the enzyme's activation at oil/water interface. Four substrate binding pockets were identified for triglycerides: an oxyanion hole and three pockets accommodating the fatty acids bound at positions sn-1, sn-2, and sn-3. These pockets determine the enantiopreference of a lipase. The understanding of structure-function relationships as well as the development of molecular evolution techniques will enable researchers to tailor new lipases for biotechnological applications.

세균은 지방을 분해할 수 있는 다양한 리파제를 생산한다. 리파제는 반응조건에 따라서 지방의 합성도 수행할 수 있는데 , 이러한 효소반응과정에서 고도의 기질특이성과 위치특이성 및 입체특이성을 보이기 때문에 제약산업과 정밀화학산업에서 효소촉매로서 널리 사용되고 있다. 지금가지 200종류 이상의 리파제효소가 보고되었으며, 이것들은 효소생산기원과 아미노산 상동성을 기준으로 6개의 family로 분류된다. 지난 10년 간 세균 리파제 6종에 대한 3D구조가 밝혀졌다. 이것들은 모두 중심부분에$\alpha/\beta$폴딩구조와 세린, 히스티딘, 아스팔틴산으로 구성된 활성부위를 공통적으로 갖고 있다. 활성부위를 양친성 $\alpha$나선구조가 뚜껑처럼 덮고 있으며, 물과 오일의 경계면을 만나면, 이 뚜껑이 열리고 효소활성이 크게 증가하는 '계면활성화' 현상을 보인다. P. cepacia 리파제 구조에는 기질과 결합하는 4개의 포켓이 있는데 이중 하나는 옥시음이온 구멍이고, 다른 세 개는 기질의 sn-1, sn-2, sn-3 지방산과 결합하는 부위이다. 이 포켓의 크기와 방향 및 소수성정도에 의해서 효소의 기질특이성과 입체특이성이 결정된다. 현재 이러한 구조연구를 기반으로 사용목적에 따른 맞춤 효소를 생산하기 위한 효소 개량연구가 활발히 진행되고 있다.

Keywords

References

  1. WO9530744 Lipases with improved surfactant resistance Aehle,W.;G.Gerritse;H.B.M.Lenting
  2. EP407225 Enzymes and enzmatic detergent compositions Batenburg,A.M.;M.R.Egmond;L.G.J.Frenken;C.T.Verrips
  3. Nature v.343 A serine protease triad forms the catalytic center of a triacylglycerol lipase Brady,L.;A.M.Brzozowski;Z.S.Derewenda;E.Dodson;G.Dodson;S.Tolley;J.P.Turkenburg;L.Christiansen;B.Huge-Jensen;L.Norskov https://doi.org/10.1038/343767a0
  4. J. Mol. Biol. v.227 The crystal and molecular structure of the Rhizomucor miehei triglyceride lipase at 1.9 resolution Derewenda,Z.S.;U.Derewenda;G.G.Dodson https://doi.org/10.1016/0022-2836(92)90225-9
  5. Nat. Struct. Biol v.1 An unusual buried polar cluster in a family of fungal lipases Derewenda,U.;L.Swenson;R.Green;Y.Wei;G.G.Dodson(et al.) https://doi.org/10.1038/nsb0194-36
  6. J. Lipid Res. v.35 Conformational lability of lipases observed in the absence of an oil-water interface-crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar Derewenda,U.;L.Swenson;Y.Y.Wei;R.Green;P.M.Kobos(et al.)
  7. J Biol Chem v.270 Human hepatic and lipoprotein lipase:the loop covering the catalytic site mediates lipase substrate specificity Dugi,K.A.;H.L.Dickek;S.Santamarina-Fojo
  8. Engineering of/with Lipases, NATO ASI Series, Series E: Applied Sciences v.317 Strategies and design of mutations in lipases Egmond,M.R.;J. de Vlieg;H.M.Veheij;G.H. de Haas;F.X.Malcata(ed.)
  9. WO9100920 Process for preparing a protein by a fungus transformed by multicopy integration of an expression vector Giuseppin,M.L.F.;M.T.S.Lopes;R.J.Planta;J.M.A.Verbakel;C.T.Verrips
  10. US5389536 Lipase from Pseudomonas mendocina having cutinase activity Gray,G.L.;S.D.Scott;A.J.Ayrookaran
  11. J. Biol. Chem. v.268 Insights into interfacial activation from an open structure of Candida rugosa lipase Grochulski,P.;Y.Li;J.D.Schrag;F.Bouthillier;P.Smith(et al.)
  12. Protein Sci. v.3 Two conformational states of Candida rugosa lipase Grochulski,P.;Y.Li;J.D.Schrag;M.Cygler https://doi.org/10.1002/pro.5560030111
  13. Tetrahedron Lett. v.36 Inversion of enantioselectivity in hydrolysis of 1,4-dihydropyridines by point mutation of lipase PS Hirose,Y.;K.Karija;Y.Nakanishi;Y.Kurono;K.Achiwa https://doi.org/10.1016/0040-4039(94)02454-J
  14. J. Protein Chem. v.14 Probing the function role of E87 and W89 in the lid of Humicola lanuginosa lipase through transesterification reactions in organic solvent Holmquist,M.;I.G.Clausen;S.A.Patkar;A.Svendsen;K.Hult https://doi.org/10.1007/BF01886762
  15. Biochemistry v.36 Identification of residues essential for differential fatty acyl specificity of Geotrichum candidum lipases Ⅰand Ⅱ Holmquist,M.;D.C.Tessier;M.Cygler https://doi.org/10.1021/bi971390d
  16. Annu.Rev. Microbiol. v.53 Bacterial biocatalysis: molecular biology three-dimensional structures, and biotechnological applications of lipases Jaeger,K.E.;B.W.Dijkstra;M.T.Reetz https://doi.org/10.1146/annurev.micro.53.1.315
  17. FEMS Microbiol. Rev. v.15 Bacterial lipases Jaeger,K.E.;S.Ransac;B.W.Dijkstra;C.Colson;M.van Heuvel;O.Misset https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  18. J. Biol. Chem. v.277 Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase Jeong,S.T.;H.K.Kim;S.J.Kim;S.W.Chi;J.G.Pan;T.K.Oh;S.E.Ryu https://doi.org/10.1074/jbc.M200640200
  19. Lipids v.29 Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis Joerger,R.D.;M.J.Haas https://doi.org/10.1007/BF02537305
  20. Acta Crystallogr v.D58 Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution Kawasaki,K.;H.Kondo;M.Suzuki;S.Ohgiya;S.Tsuda
  21. Structure v.5 The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor Kim,K.K.;H.K.Song;D.H.Shin;K.Y.Hwang;S.W.Suh https://doi.org/10.1016/S0969-2126(97)00177-9
  22. Structure v.5 Crystal structure of carboxylesterase from Pseudomonas fluorescens, an α/β hydrolase with broad substrate specificity Kim,K.K.;H.K.Song;D.H.Shin;K.Y.Hwang;S.Choe(et al.) https://doi.org/10.1016/S0969-2126(97)00306-7
  23. Enzyme Microb. Technol. v.22 Characterization and enantioselectivity of a reconbinant esterase from Pseudomonas fluorescens Krebsfanger,N.;F.Zocher;J.Altenbuchner;U.T.Bornscheuer https://doi.org/10.1016/S0141-0229(98)00004-0
  24. Chem. Phys. Lipids v.93 Structural investigations of the regio and enantioselectivity of lipases Lang,D.A.;B.W.Dkjkstra https://doi.org/10.1016/S0009-3084(98)00035-8
  25. J. Mol. Biol v.259 Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 resolution Lang,D.;B.Hofmann;L.Haalck;H.J.Hecht;F.Spener(et al.)
  26. Eur. J. Biochem v.254 Structural basis of the chiral selectivity of Pseudomonas cepacia lipase Lang,D.A.;M.L.M.Mannesse;G.H.de Haas;H.M.Verheij;B.W.Dijkstra https://doi.org/10.1046/j.1432-1327.1998.2540333.x
  27. Proc. Natl. Acad. Sci. USA v.90 Gene organisation and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase from Moraxella TA114, an antarctic bacterium Langin,D.;H.Laurell;L.S.Holst;P.Belfrage;C.Holm https://doi.org/10.1073/pnas.90.11.4897
  28. Biochim. Biophys. Acta v.1441 Structure-activity of cutinase a small lipolytic enzyme Longhi,S.;C.Cambillau https://doi.org/10.1016/S1388-1981(99)00159-6
  29. Mol. Membr. Biol. v.14 A novel family of channel-forming, autotransporting, bacterial virulence factors Loveless,B.J.;J.M.H.Saier https://doi.org/10.3109/09687689709048171
  30. Methods Enzymol v.284 Site-specific mutagenesis of human pancreatic lipase Lowe,M.E. https://doi.org/10.1016/S0076-6879(97)84010-4
  31. Biochemistry v.34 Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogs-effect of acyl-chain length and position in the substrate molecule on activity and enantiose-lectivity Mannesse,M.L.M.;R.C.Cox;B.C.Koops;H.M.Verheij;G.H. de Haas;M.R.Egmond;H.T.W.M.Vanderhijden;J. de Vlieg https://doi.org/10.1021/bi00019a020
  32. Nature v.356 Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent Martinez,C.;P.de Geus;M.Lauwereys;M.Matthyssens;C.Cambillau https://doi.org/10.1038/356615a0
  33. J. Biol. Chem. v.275 Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family Ⅰ.1 of bacterial lipases Nardini,M.;D.A.Lang;K.Liebeton;K.E.Jaeger;B.W.Dijkstra https://doi.org/10.1074/jbc.M003903200
  34. FEBS Lett. v.331 The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate Noble,M.E.M.;A.Cleasby,L.K.;Johnson,M.R.;Ehmond;L.G.J.Frenken https://doi.org/10.1016/0014-5793(93)80310-Q
  35. Protein Eng v.5 The α/β hydrolase fold Ollis,D.L.;E.Shea;M.Cygler;B.Dijkstra;F.Frolow(et al.) https://doi.org/10.1093/protein/5.3.197
  36. FEBS Lett v.403 Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase:apparent residues of the catalytic triad Osterlund,T.;J.A.Contreras;C.Holm https://doi.org/10.1016/S0014-5793(97)00063-X
  37. Chem. Phys. Lipids v.93 Effect of mutations in Candida antarctica B lipase Patker,S.A.;J.Vind;E.Kelstrup;M.W.Christensen;A.Svendsen;K.Borch;O.Kirk https://doi.org/10.1016/S0009-3084(98)00032-2
  38. J. Biotechnol v.66 Protein engineering the surface of enzymes Petersen,S.B.;P.H.Jonson;P.Fojan;E.I.Petesen;M.T.N.Petersen;S.Hansen;R.J.Ishak;E.Hough https://doi.org/10.1016/S0168-1656(98)00153-9
  39. EP375102 Enzymatic peracid bleaching system with modified enzyme Poulose,A.J.;S.A.Anderson
  40. Top. Curr. Chem. v.200 Superior biocatalysts by directed evolution Reetz,M.T.;K.E.Jaeger https://doi.org/10.1007/3-540-68116-7_2
  41. Angew. Chem. Ed. Engl. v.36 Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution Reetz,M.T.;A.Zonta;Z.K.Schimossek;K.Liebeton;K.E.Jaeger https://doi.org/10.1002/anie.199728301
  42. Methods Enzymol v.1284 Lipases and /hydrolase fold Schrag,J.D.;M.Cygler
  43. Structure v.5 The open conformation of a Pseudomonas lipase Schrag,J.D.;Y.Li;M.Cygler;D.Lang;T.Burgdorf(et al.) https://doi.org/10.1016/S0969-2126(97)00178-0
  44. Nature v.351 Ser-His-Glutriad forms the catalytic site of the lipase from Geotrichum candidum Schrag,J.D.;Y.Li;S.Wu;M.Cygler https://doi.org/10.1038/351761a0
  45. Protein Eng v.8 Redesigning the active site of Geotrichum candidum lipase Schrag,J.D.;T.Vernet;L.Laramee;D.Y.Thomas;A.Recktenwald(et al.) https://doi.org/10.1093/protein/8.8.835
  46. Protein Eng. v.11 Rational design of Rhizopus oryzea lipase with modified stereoselectivity toward triradylglycerols Scheib,H.;J.Pleiss;P.Stadler;A.Kovac;A.P.Potthoff;L.Haalck;F.Spener;F.Paltauf;R.D.Schmid https://doi.org/10.1093/protein/11.8.675
  47. Biochem. Soc. Trans. v.25 Bacillus thermocatenulatus lipase:a thermoalkalophilic lipase with interesting properties Schmidt-Dannert,C.;M.L.Rua;S.Wahl;R.D.Schmid
  48. Biochemistry v.36 Dessecting the catalytic mechanism of staphylococcal lipases: chain length selectivity, interfacial activation and cofactor depedence Simons,J.W.F.A.;J.W.P.Boots;M.P.Kats;A.J.Soltboom;M.R.Egmond;H.M.Verheij https://doi.org/10.1021/bi9713714
  49. WO9205249 Lipase varients Svendsen,A.;I.G.Clausen;S.A.Patkar;E.Gormsen
  50. WO9311254 protease-stable proteins Svendsen,A.;I.G.Clausen;S.A.Patkar;E.Gormsen
  51. WO9425577 lipase varients Svendsen,A.;I.G.Clausen;S.A.Patkar;E.Gormsen
  52. Biochim. Biophys. Acta v.1256 Lipase from Chromobacterium viscosum:biochemical characterization indicating homology to the lipase from Pseudomonas glumae Taipa,M.A.;K.Liebeton;J.V.Costa;J.M.S.Cabral;K.E.Jaeger https://doi.org/10.1016/0005-2760(95)00052-E
  53. Chem. Rev. v.95 Lipase-supported synthesis of biologically active compounds Theil,F. https://doi.org/10.1021/cr00038a017
  54. J. Mol. Biol v.32 Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1 Tyndall,J.D.A.;S.Sinchaikul;L.A.Fothergill-Gilmore;P.Taylor;M.D.Walkinshaw
  55. Structure v.2 The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica Uppenberg,J.;M.T.Hansen;S.Patkar;T.A.Jones https://doi.org/10.1016/S0969-2126(00)00031-9
  56. Trends Biochem. Sci. v.20 A new family of lipolytic enzymes Upton,C.;J.T.Buckley https://doi.org/10.1016/S0968-0004(00)89002-7
  57. WO9425578 New lipase varients for use in detergent applications Van der Laan,J.M.;H.B.M.Lenting;L.J.S.M.Mulleners;M.M.J.Cox
  58. Chem. Phys. Lipids v.93 The phospholipase activity of Staphylococcus hyicus lipase strongly depends on a single Ser to Val mutation van Kampen,M.D.;J.W.F.A.Simons;N.Dekker;M.R.Egmond;H.M.Verheij https://doi.org/10.1016/S0009-3084(98)00027-9
  59. J. Mol. Biol. v.309 The crystal structure of Bacillus Subtilis lipase: a minimal / Hydrolase Fold Enzyme van Pouderoyen,G.;T.Eggert;K.E.Jaeger;B.W.Dijkstra https://doi.org/10.1006/jmbi.2001.4659
  60. Nat. Struct. Biol v.2 A novel variant of the catalytic triad in the Streptomyces scabies esterase Wei,Y.;J.L.Schottel;U.Derewenda;L.Swenson;S.Patkar;Z.S.Derewenda https://doi.org/10.1038/nsb0395-218
  61. Structure v.6 Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 resolution Wei,Y.;L.Swenson;C.Castro;U.Derewenda;W.Minor(et al.) https://doi.org/10.1016/S0969-2126(98)00052-5
  62. Nature v.343 Structure of human pancreatic lipase Winkler,F.K.;A.D'Arcy;W.H.unziker https://doi.org/10.1038/343771a0
  63. WO9514783 Lipase gene and varient lipase Yoneda,T.;Y.Miyota;K.Ohno;J.Sasuga