A Study on the Hopfield Neural Scheme for Data Association in Multi­Target Tracking

다중표적추적용 데이터 결합을 위한 홈필드 신경망 기법 연구

  • Published : 2003.12.01

Abstract

In this paper, we have developed the MHDA scheme for data association. This scheme is important in providing a computationally feasible alternative to complete enumeration of JPDA which is intractable. We have proved that given an artificial measurement and track's configuration, MHDA scheme converges to a proper plot in a finite number of iterations. Also, a proper plot which is not the global solution can be corrected by re­initializing one or more times. In this light, even if the performance is enhanced by using the MHDA, we also note that the difficulty in tuning the parameters of the MHDA is critical aspect of this scheme. The difficulty cat however, be overcome by developing suitable automatic instruments that will iteratively verify convergence as the network parameters vary.

본 논문에서는 다중표적 추적을 위한 데이터 결합 기법 중에서 MHDA 스킴을 제안하였다. 이 구조는 기본의 JPDA보다 계산면에서 단축이 가능하여 실제 응용에 많은 적용이 기대된다. 인위적인 측정값과 표적을 이용하여 시뮬레이션을 수행한 결과 MHDA는 기존의 JPDA보다 성능도 비슷한 특성을 보이는 것을 확인하였다.

Keywords

References

  1. D.L. Alspach,'A Gaussian Sum Approach to the Multi-Target Identification Tracking Problem,' Automaica, Vo1.11, pp.285-296, 1975 https://doi.org/10.1016/0005-1098(75)90044-8
  2. D,B, Reid, 'An. algorithm for tracking multiple targets,' IEE Trans. on Automat. Contr., Vo1.24, pp.843-854, Dec. 1979 https://doi.org/10.1109/TAC.1979.1102177
  3. D. Sengupta and R.A. Iltis, 'Neural solu-tion to the multitarget tracking data association problem,' IEEE Trans. on AES-25, pp.96-108, Jan.1989
  4. T. E. Fortmann, Y. Barshalom and M. Scheffe, 'Sonar Tracking of multiple targets using Joint Probabilistic Data Association,' IEEE J. Oceanic Engineering, Vol. OE-8, pp.173-184, Jul. 1983 https://doi.org/10.1109/JOE.1983.1145560
  5. J.J. Hopfield and D.W. Tank, 'Neural computation of decisions in optimization problems,' Biological Cybematics, pp.141-152, 1985
  6. B. Xhou, 'Multitarget Tracking in clutter : Algorithms for data association and state estimation,' PhD thesis, Pennsylvania State University, May, 1992
  7. T.E. Fortmann and Y. Bar-Shalom, Tracking and Data Association. Orland acdemic Press, Inc. p224, 1988
  8. E. Wacholder, ' A Neural network based optimization algorithm for the weapon target assignment problem,' Orland ridge National