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A Study on the Hopfield Neural Scheme for Data Association in Multi-Target Tracking
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ABSTRACT

In this paper, we have developed the MHDA scheme for data association. This scheme is important in providing a
computationally feasible alternative to complete enumeration of JPDA which is intractable. We have proved that given an artificial
measurement and track’s configuration, MHDA scheme converges to a proper plot in a finite number of iterations. Also, a proper
plot which is not the global solution can be corrected by re-initializing one or more times. In this light, even if the performance
is enhanced by using the MHDA, we also note that the difficulty in tuning the parameters of the MHDA is critical aspect of
this scheme. The difficulty can, however, be overcome by developing suitable automatic instruments that will iteratively verify
convergence as the network parameters vary.
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| . Introduction

Generally, there are three approaches in data
association for MTT(Multi~target tracking):
likelihood
Bayesian approach[2], and neural
network approach[3].

non-Bayesian approach based on
function[1],
The major difference of
the first two approaches is how treat the false

alarms. The non-Bayesian approach calculates
all the likelihood functions of all the possible
tracks with given measurements and selects the
track which gives the maximum value of the
likelihood function. Meanwhile, the tracking
filter using Bayesian approach predicts the

location of interest using a posteriori probability.
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These two approaches are inadequate for real
time applications because the computational
complexity is tremendous.

As an alternative approach, Sengupta and
Itis[3] suggested a Hopfield neural network
(HNPDA) to
approximately compute a posteriori probability

probabilistic data association

ﬁ; for the joint probabilities data association

filter (JPDAF) [4] as a constrained minimization
problem.

This technique based on the use of neural
networks was also started by comparison with
the traveling salesman problem (TSP).

In fact ﬂ; is approximated by the output

voltage Xj of anewroninan (m+1) X n

array of neurons, where m is the number of
measurements and n is the number of targets.

Sengupta and [Itis[3] claimed that the
performance of the HNPDA was close to that of
the JPDAF in situations where the numbers of
measurements and targets were in the ranges of
3 to 20 and 2 to 6, respectively.

The success of the HNPDA in their examples
was credited to the accurate emulation of all the
properties of the JPDAF by the HNPDA.

However, the neural network developed in [3]
has been shown the two problems.

First, the neural network developed in [3] has
been shown to have improper energy functions.

Second, heuristic choices of the constant
parameters in the energy function in [3] didn’t
guarantee the optimal data association.

1. Energy Function in the HNPDA

Suppose there are n targets and m measu-
rements. The energy function used in [3] is

reproduced below
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in {3, X} is the output voltage of a neuron in
an ( m + 1) X n array of neurons and is the

approximation to the a posteriori probability ,6; in

the JPDAFI[4]. This a posteriori probability, in the
special case of the PDAF when the probability Fg

that the correct measurement falls inside the

validation gate is unity, is denoted by p}. Actually,

P, is very close to unity when the validation gate

size is adequate. In (1), ABCD, and E are
constants.

In the HNPDA, the connection strength matrix
is a symmetric matrix of order n( m + 1). With

the given energy function Ep,p in (1), the

connection strength W3] from the neuron at location

(7, D) to the neuron at location (¢, j ) is

I —EL‘+ D+ Ex—11 ir

3 =|(—‘1;+ Il

@

The input current ]j to the neuron at location

(tj), for t =1,2,...,n,andj =0,1,...,m,is

E=C+ D+ Epi+En—1-3 ¢}
=1 (3)

Clearly from (2)and (3), the input current I but

not the connection strength j,T depends on the pj.

s, which are computed form the measurements that
comprise the input data. Ironically, in the neural
the TSP[5],
strengths depend on the input data which, in this

network for only the connection
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case, are the distances between pairs of cities.

In order to justify the first two terms of Ep,p
in (1), the authors of [3] claimed that the dual
assumptions of no two returns form the same
target and no single return from two targets are
consistent with the presence of a dominating X; in
each row and each column of the (m + 1) X n
array of neurons. However, these assumptions are
not constraints on the values of the §i's in the
original JPDAF. Those assumptions should be used
the feasible data
association hypotheses, as pointed out in [4].

As a matter of fact, there could be two B;'s of

only in the generation of

comparable magnitude in the same row and in the
same column as shown in Chapter 4 of [6].
Therefore, the presence of a dominating Xj in each

row and each column is not a property of the
JPDAF.

The third term of Ep,p is used to constrain

the sum of the X; ‘s in each column to unity ie

m
Eth =1. This constraint is consistent with the
;=0

requirement thatﬁ; = 1 in both the JPDAF and the
PDAF[7]. Therefore, this constraint, by itself, does
not permit us to infer whether the ﬁ;fs are from
the JPDAF, or from the PDAF.

The assumption used to set up the fourth term
is that this term is small only if X7 is close to pJ,

in which case the neural network simulates more

closely the PDAF for each target rather than the
intended JPDAF in the multitarget scenario. Finally,
the fifth term is supposed to be minimized if X; is

not large unless for each 7 #t there is a unique !/
=j such that p; is large.

Unfortunately, this constrained minimization may
not be possible as shown in [6]. This is consistent

1842

with the heuristic nature of the derivation of the
energy function in [3], which

could lead to the problems in the implementation
of the HNPDA as discussed next.

. Modified Scheme of HNPDA

3.1 Basic Neural Network Representation

To address data association problem within the
framework of artificial neural networks, we adopt
the Hopfield-Tank[18]} approach. We define, instead
of the feasibility matrix element variables w, of
the previous section, new continuous association
variables X!. Each X} represents the output signal
of neurons. Thus, X} represents the association
pair for the /th return and the tth target.

The Hopfield network for MTT is a single-layer,
symmetric,

network that has m by (n+1) neurons,
each receiving inputs from all the others (the

nonlinear, and recurrent associative

input that a neuron receives from itself is ignored)

as shown in Fig.3.1. The states of the neurons are

denoted by S, 1 € m, ¢t € nin m(n + 1) space.
From its state through an activation function, the

association pair variable is related to the neuron’s
state as follows:

Figure 3.1 : Single layer Hopfield network

X, = f(5,) = 511 - tanh (,)]. @
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In Hopfield model, the evolution of the activity of
each neuron (its rate of change with time) is
described by

d‘S; (t ) oF (5)

d = 8X’

7

The time evolution of the energy function is

a5i(t) X (t) oE
85, (t) 0X,(t)

dE _
at &4 ot

6)

To show that the model in (5) minimize E, we
substitute (5) into (6) and obtain

25, (t) \,, dX; (t)

dFE 2
= ot )(dSi(t) )= 0 @)

dt

_.223(

Equation (7) show that E
function of time t. In the case of stable recurrent

is a decreasing

networks it is possible to verify that the energy
function (Lyapunov function) given by

1
B= = RN WXX, - S, ®

necessarily admits local minima, corresponding to
some vertices of the m(n+1)-dimensional hypercube
defined by the condition X; = 0 or 1 [8]. For the

unipolar activation function, the Hopfield operational
equation for the ith neuron is

asi S oF
axX,’

dt s
S.

= -3 +§i]Wi].Xj+1,._

where S, is a free parameter to be chosen and

W,. is the connection weight from jth neuron to

ith neuron and I, is the external input data for the

shows that the
E converge to a local minimum as t

ith neuron. The solution of (7)
energy
progresses. Thus, the set of neural activities {X;)

in the final stationary state describes a minimum
energy state of the system.

3.2 Modification of Energy Equation

In Hopfield network, when the operation is
approaching the steady state, at most one neuron
gets into the ON state in each row and column and
the other neurons must be in the OFF state.

To guarantee the this state, we add the following
constraints additionally for Hopfield network :

m n i3 m

n 1 m
SN wwy, + Et;j;[;wﬁw“.(m)

j=li=0r=t

1
£

Finally, we get the final energy equation for
Hopfield network:

é’ﬂ

v.«l,g
=
M:
4
b

1oty
1=
gt
2

]
)
=3
g
*
]
I
1
*

Ve, -
W

o
gl
s
-

+
)
=
04
%

n
n

150y

(42

INgE)
&

7
>
e
Ms

I
-
I
o
"
[

The first two terms of (11) correspond to row
and column inhibition and the third term suppressed
the activation of uncorrelated part( ie if w; =0,
then w;=0 ). The fourth and fifth terms biased the
final solution ‘towards a normalized set of numbers.
The last term favors associations which have a
nearest neighbor in view of target velocity.

3.3 Transformation of Energy Function into
Hopfield Network

1843
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A Hopfield network with m{n+l1) neurons was
considered. The neurons were subdivided into ntl
target’s column of m neurons each. Henceforward
we will identify each neuron with a double index,
ti(where the index t=01,---

whereas the index /=1,

1 relates to the target,
Jm refers to the neurons in

each column), its output with Xf, the weight for

neurons jt and I with WY, and the external bias

4l
current for neuron ¢/ with Ij. According to this
convention, we can extend the notation of the

Lyapunov energy function (8) to two dimensions.
Using the Kronecker delta function

Cf1ifi=j
5ij—{o ifi =7 (12)

LR 2050 RUEREAUEE 3 53 9 R TR S
*L—EZ’:;; MR AL L}_‘):
030 3 EENE T 5 303 30 20 R ]
A SO 19

We also can extend the notation of the Lyapunov
energy function (8) to two dimensions:

w|-

D IPIDIPMIFAALED ISP 4
t 5 ¢ t 3 (14)

T

and (13),
connection strength matrix and input parameters

By comparing (14) we get the
each :

T m= [ =+ Bk ~ g+ Fliy, — [B'1 — gyt + D11 = g«
B eCuoak D=y 2ot =i + F (15)

Here we omit the constant terms such as

Dn+Fm gzzw;( 1 - 4,). These

2
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terms do not affect the neuron’s output since they
just act as a bias terms during the processing.

Using the (1), the connection strength W3
from the neuron at location (7,)) to the neuron at
location (tJ) is

= rD L=yt F)
[ —»4+ -'J

(16)

Fig.3.2
network architecture as a directed graph using the

sketches the resulting two-dimensional

(16). We note that only 39 connections of possible
81 connections are achieved in this 3 X 3 neurons
example. This means that modified Hopfield netw-
ork can be represented as a sparse matrix. In
Fig.32, we also note that there are no connections
between diagonal neurons.

-(A+F)

Fig. 3.2 Example of Hopfield network for two
targets and three plots

With the specific values from (15), the equation
of motion for the MTT becomes

N At =i+ (ot — e+ Fli~ 18—,
T 1
1

—i X4 Gy D= TG =0, 4 F 17

The final equation of data association is
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track 1 and measurement 4, track 2 measurement 2

LD A S Y - TR s
an A r=Trws OV
i e and track 3 and measurement 6. Note that the
AR SR WY REY 25 SR N EE PR E U L. . .
= = (18) results of data association is correct with respect to
atel

nearest neighbor. In the simulation, the constants
appeared to be suitable for this scenario. S, was

The  parameters ABCD,F and G can be selected to be 1 s.

adjusted to control the emphasis on different
constraints and properties. A larger emphasis on

AB, and F will produce the only one neuron’s 18] ]
activation both column and row. A large value of C 8
will produce X! close to w;, except the dupl-

()
icated activation of neurons in the same row and gop x \

column. A larger emphasis on & will make the er

neuron activate depending on the value of target's j x m

course weighted value. Finally, a balanced com- J ;
bination of all six parameters will lead to the most o———— e

10
X axis [m]
Fig. 4.1 : Diagram of Hopfield network for three
of targets and measurements will only require a targets and senec plots

desirable association. In this case, a large number

larger array of interconnected neurons instead of an

increased load on any sequential software to
compute the association probabilities.

IV. Simulation Results ;

50 100 200 250 EL

150
Heration Nurmber

4.1 Data Association Experiments

Fig. 4.2 : Distance energy convergence for three
targets and seven plots

To exactly test the data association capability of
the MHDA method, predefined targets and meas- »
urements value are used to exclude any effects due

to miss detection that are moderately occurring in
real environment. An example of three targets and
seven measurements is depicted in Fig4.1 In Fig.

4.1 large circles represent track gates and symbol *

S0 100

means plots of measurements and small circles on ] ) e e ]
Fig. 4.3 : Matching energy of Hopfield network

for three targets and seven plots

20 EE) £

the some measurement’s plots represent the plots
of measurements which are associated with tracks

by MHDA. 4.2 Sequential Tracking Experiments
During the iteration, Fig4.2 and 4.3 show how
the distance and matching energy change resp- In Figd44 and 45, track estimation errors bet-

ectively. In this example, the association pairs are  yween MHDA and HNPDA for the crossing targets

1845,
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are shown with respect to rms error in position
in clutter density,C'= 0.2. Both
MHDA and HNPDA maintain tracks and have a

good performance even if a large error occurred in

and velocity

the vicinity of crossing point.

In Fig. 44 and 45, the rms estimation errors for
the maneuvering targets are shown. HNPDA can
not track the dog leg maneuvering targets but the
constant acceleration target. Table 4.1 summarizes
the rms position and velocity errors for each target.
The rms errors of the HNPDA about maneuvering
targets have not been included since it loses track
of one of targets. The performance of the MHDA is
superior to that of HNPDA in terms of tracking
accuracy about 88 %
maintenance about 3.3 %.

and in terms of track

5 10 15 20 25 30 35 4
Time (k=40)

&

5 10 25 30 35 a0

5 20
Time (k=40)

Fig. 44 : RMS errors in X axis for target 8 :-
MHDA....HNPDA

5 20 25 30 35 40
Time (k=40)

0

5 10 5 ﬁmez(?<=40) 5 30 35 40
Fig. 4.5 : RMS erros in X axis for target 9 : -
MHDA ... HNPDA
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V. Conclusions

In this paper, we have developed the MHDA
This scheme is
important in providing a computationally feasible

scheme for data association.
alternative to complete enumeration of JPDA which
is intractable. We have proved that given an
artificial measurement and track’s configuration,
MHDA scheme converges to a proper plot in a
finite number of iterations.

Table 4.1 : RMS Errors in case of ten targets

Targ Position error Velocity error T r a ¢ k

et [(km ) (km/ S ) maintenance(%)

i [1NPpA MHDA HNPDA |{MHDA |HNPDA |MHDA
1 0.048 0.04 0.024 0021 9% 8
2 0.061 0.048 0.028 0018 95 B
3 0.065 0.044 0.021 0018 8 ]
4 0.049 0.041 0.020 0018 93 B
5 0.041 0.044 0.018 0018 100 100
6 0.042 0.043 0.021 0018 100 100
7 C.040 0.040 0.018 0018 100 100
8 - 0.295 - 0.118 0 53
9 0.068 0.047 0.027 0.022 100 100
10 0.037 0.039 0.011 0012 100 100

Also, a proper plot which is not the global
solution can be corrected by re-initializing one or
more times. In this light, even if the performance is
enhanced by using the MHDA, we also note that
the difficulty in tuning the parameters of the
MHDA
fficulty can, however, be overcome by developing

suitable automatic instruments that will iteratively

is critical aspect of this scheme. The di-

verify convergence as the network parameters vary.
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