DOI QR코드

DOI QR Code

유사 동력학적 습윤지수와 동력학적 습윤지수의 개발과 적용

The Development and Application of the Quasi-dynamic Wetness Index and the Dynamic Wetness Index

  • 한지영 (부산대학교 환경공학과) ;
  • 김상현 (부산대학교 환경공학과) ;
  • 김남원 (부산대학교 공과대학 환경공학과) ;
  • 김현준 (한국건설기술연구원)
  • 발행 : 2003.12.01

초록

토양수분 분포의 시공간적인 예측을 위하여 유사 동력학 상태의 습윤지수 계산과정을 정리하였고, 우량 자료를 회귀적분한 동력학적 습윤지수의 계산 알고리즘을 개발하였다. 설마천 유역의 수치고도 모형과 2년간의 우량자료를 활용하여 동력학적 상태의 습윤지수의 시ㆍ공간적인 거동을 분석하였다. 공간적인 거동은 동력학적인 습윤지수가 유사 동력학적 상태나 정적인 습윤지수와 비교하여 흐름분산 특성이 강조된 분포특성을 보여주었다. 통계적인 특성으로는 시간이 경과함에 따라 유사동력학적 습윤지수나 동력학적 습윤지수 모두 정상상태 습윤지수에 근접하나, 동력학적 습윤지수의 경우 두 개의 상이한 분포특성이 나타났다.

Formulation of quasi-dynamic wetness index was derived to predict the spatial and temporal distribution of the soil moisture. The algorithm of dynamic wetness index was developed through introducing the convolution integral with the rainfall input. The spatial and temporal behaviors of the wetness index of the Sulmachun Watershed was calculated using the digital elevation model(DEM) and the rainfall data for two years. The spatial distribution of the dynamic wetness index shows most dispersive feature of flow generation among the three assumptions of steady, quasi-dynamic and dynamic. The statistical distribution of the quasi-dynamic wetness index and the dynamic wetness index approximate to the steady state wetness index as the time step is increased. The dynamic wetness index shows mixed distribution of the normalized probability density function.

키워드

참고문헌

  1. 윤용남(1998) 工業水文學 淸文閣, pp.142-155
  2. 한지영, 김상현(2003) '토양수분 예측을 위한 수치지형 인자와 격자크기에 대한 연구' 한국수자원학회지 게재예정
  3. Barling, R. D., I. D. Moore, and R. B. Grayson (1994) 'A quais-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content' Water Resources Research, Vol 30, No. 4. pp. 1029-1044 https://doi.org/10.1029/93WR03346
  4. Beven, K. J. and Kirkby J. N. (1979) 'A physically-based, variable contributing area model of basin hydrology' Hydrological Sciences Bulletin, Vol 24, pp. 43-69 https://doi.org/10.1080/02626667909491834
  5. Burt, T. P. and Butcher, D. P. (1985) 'Topographic controls of soil moisture distributions' Journal of Soil Science, Vol. 36, pp. 469-486 https://doi.org/10.1111/j.1365-2389.1985.tb00351.x
  6. Iida, T. (1984) 'A hydrological method of estimation of topographic effect on saturated throughflow' Trans. Jap. Geomorphol. Union. Vol. 5, No.1, pp. 1-12
  7. O'Loughlin, E. M. (1986) 'Prediction of surface saturation zones in natural catchments by topographic analysis' Water Resources Research, Vol 22, No. 5. pp. 794-804 https://doi.org/10.1029/WR022i005p00794
  8. Troch, P. A.and Brutsaert (1993) 'Effective water table depth to describe initial conditions prior to storm rainfall in humid regions' Water Resources Research, Vol 29, No. 2. pp. 427-434 https://doi.org/10.1029/92WR02087
  9. Vukovie M. and Soro A.(1992) 'Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition' Water Resources Publi-cations, pp. 25-83
  10. Wigmosta M. S. and Lettenmaier D. P. (1999) 'A comparison of simplified methods for routing topographically driven subsurface flow' Water Resources Research, Vol 35, No. 1. pp. 255-264 https://doi.org/10.1029/1998WR900017
  11. Zhang, W. and Berndtsson(1991) 'Analysis of soil water dynamics in time and space by use of pattern recognition' Water Resources Research, Vol 27, No. 7. pp. 1623-1636 https://doi.org/10.1029/91WR00436