DOI QR코드

DOI QR Code

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis

비선형 지반-구조물 상호작용해석을 위한 새로운 복합법

  • Published : 2003.12.01

Abstract

This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

이 논문에서는 비선형 지반-구조물 상호작용해석을 위한 새로운 시간-주파수영역 복합법을 제시하였다. 제안한 방법은 등가선형 지반-구조물 상호작용해석 프로그램과 범용 비선형 유한요소해석 프로그램을 동시에 사용하는 실용적인 방법이다. 이 방법에서는 먼저 주파수영역에서 등가선형 지반-구조물 상호작용해석을 수행하여 유한요소 영역의 경계면에서 응답을 구한 다음, 이를 범용 비선형 유한요소해석 프로그램에 의한 비선형 동적해석의 시간의존 경계조건으로 입력한다. 제안된 방법의 검증을 위하여 2차원 지하철 정거장 구조물에 대한 지진해석을 수행하였다. 이를 위하여 등가선형 지반-구조물 상호작용해석 프로그램 KIESSI-2D와 비선형 유한요소해석 프로그램 ANSYS를 사용하였다 수치적인 해석결과로부터 이 연구에서 제안한 방법의 타당성을 확인할 수 있었다.

Keywords

References

  1. Lysmer, J. and Kuhlemeyer, “Finite dynamic model for infinite media,” J. of Eng. Mechanics Div., ASCE, Vol. 95, 1969, pp. 859-877.
  2. White, W., Valliappan, S., and Lee, I. K., “Unified boundary for finite dynamic model,” J. of Eng. Mechanics Div., ASCE, 1977, Vol. 103.
  3. Kausel, E., “Forced Vibration of Circular Foundations on Layered Media,” Ph.D. Thesis, MIT, Cambridge, MA, USA, 1974.
  4. Tassoulas, J. L. and Kausel, E., “Elements for the numerical analysis of wave motion in layered strata,” Int'l J. for Numerical Methods in Eng., Vol. 19, 1983, pp. 1005-1032. https://doi.org/10.1002/nme.1620190706
  5. Kim, J. K., Koh, H. M., Kwon, K. J. and Yi, J. S., “A three-dimensional transmitting boundary formulated in Cartesian co-ordinate system for the dynamics of nonaxisymmetric foundations,” Earthquake Eng. and Structural Dynamics, Vol. 29, 2000, pp. 1527-1546. https://doi.org/10.1002/1096-9845(200010)29:10<1527::AID-EQE978>3.0.CO;2-S
  6. Wolf, J. P., Dynamic Soil-Structure Interaction, Prentice-Hall, Englewood Cliffs, NJ., 1985.
  7. Chen, C-H. and Penzien, J., “Dynamic modelling of axisymmetric foundations,” Earthquake Eng. and Structural Dynamics, Vol. 14, 1986, pp. 823-840. https://doi.org/10.1002/eqe.4290140602
  8. Liou, G-S., “Analytical solutions for soil-structure interaction in layered media,” Earthquake Eng. and Structural Dynamics, Vol. 18, 1989, pp. 667-686. https://doi.org/10.1002/eqe.4290180507
  9. Apsel, T. J. and Luco, J. E., “Impedance functions for foundations embedded in a layered medium: An integral equation approach,” Earthquake Eng. and Structural Dynamics, Vol. 15, 1987, pp. 213-231. https://doi.org/10.1002/eqe.4290150205
  10. Medina, F. and Penzien, J., “Infinite elements for elastodynamics, Earthquake Eng. and Structural Dynamics, Vol. 10, 1982, pp. 699-709. https://doi.org/10.1002/eqe.4290100507
  11. Rajapakse, R. K. N. D. and Karasudhi, P., “An efficient elastodynamic infinite element,” Int'l J. of Solids and Structures, Vol. 22, 1986, pp. 643-657. https://doi.org/10.1016/0020-7683(86)90028-4
  12. Yang, S.-C. and Yun, C.-B., “Axisymmetric infinite element for soil-structure interaction analysis,” Engineering Structures, Vol. 14, 1992, pp. 361-370. https://doi.org/10.1016/0141-0296(92)90019-M
  13. Zhao, C. and Valliappan, S., “A dynamic infinite element for three-dimensional infinite-domain wave problems,” Int'l J. for Numerical Methods in Eng., Vol. 36, No. 15, 1993, pp. 2567-2580. https://doi.org/10.1002/nme.1620361505
  14. Yun, C-B., Kim, J-M., and Hyun, C-H., “Axisymmetric elastodynamic infinite elements for multi-layered halfspace,” Int'l J. for Numerical Methods in Eng., Vol. 38, 1995, pp. 3723-3743. https://doi.org/10.1002/nme.1620382202
  15. Karabalis, D. L. and Beskos, D. E., “Dynamic response of 3-D rigid surface foundations by time-domain boundary element method,” Earthquake Eng. and Structural Dynamics, Vol. 12, 1984, pp. 73-93. https://doi.org/10.1002/eqe.4290120106
  16. Ahmas, S. and Banerjee, P. K., “Time-domain transient elastodynamic analysis of 3-D solids by BEM,” International Journal for Numerical Methods in Engineering, Vol. 26, 1988, pp. 1709-1728. https://doi.org/10.1002/nme.1620260804
  17. Estof, O. and Kausel, E., “Coupling of boundary and finite elements for soil-structure interaction problems,” Earthquake Eng. and Structural Dynamics, Vol. 18, 1989, pp. 1065-1075. https://doi.org/10.1002/eqe.4290180711
  18. Wang, S. and Schmid, G., “Dynamic structure-soilstructure interaction by FEM and BEM,” Computational Mechanics, Vol. 9, 1992, pp. 347-357. https://doi.org/10.1007/BF00370014
  19. Gaul, L. and Schanz, M., “A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains,” Computer Methods in Applied Mechanics and Eng., Vol. 179, 1999, pp. 111-123. https://doi.org/10.1016/S0045-7825(99)00032-8
  20. Kim, M. K., Lim, Y. M., and Rhee, J. W., “Dynamic analysis of layered half planes by coupled finite and boundary elements,” Engineering Structures, Vol. 22, 2000, pp. 670-680. https://doi.org/10.1016/S0141-0296(98)00141-2
  21. 김문겸, 임윤묵, 조석호, 정대희, “동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 비선형 지진 응답해석”, 2002년 춘계 한국지진공학회 학술발표회 논문집, 2002, pp. 125-132.
  22. Wolf, J. P. and Obernhuber, P., “Non-linear soil-structure analysis using dynamic stiffness or flexibility of soil in the time-domain,” Earthquake Eng. and Structural Dynamics, 13, 1985, 195-212. https://doi.org/10.1002/eqe.4290130205
  23. Paronesso, A. and Wolf, J. P., “Recursive evaluation of interaction forces and property matrices from unit-impulse response functions of unbounded medium based on balancing approximation,” Earthquake Eng. and Structural Dynamics, Vol. 27, 1988, pp. 609-618.
  24. Wolf, J. P. and Motosaka, M., “Recursive evaluation of interaction forces of unbounded soil in the time domain from dynamic stiffness coefficients in the frequency domain,” Earthquake Eng. and Structural Dynamics, Vol. 18, 1989, pp. 365-376. https://doi.org/10.1002/eqe.4290180305
  25. Kim, D-K. and Yun, C-B., “Time-domain soil-structure interaction analysis in two-dimensional medium based on analytical frequency-dependent infinite elements,” Int. J. for Numerical Methods in Eng., Vol. 47, No. 7, 2000, pp. 1241-1261. https://doi.org/10.1002/(SICI)1097-0207(20000310)47:7<1241::AID-NME807>3.0.CO;2-9
  26. Kawamoto, J. D., “Solution of nonlinear dynamic structural system based on a hybrid frequency-time-domain approach,” Research Report R83-5, MIT, Dept. of Civil Eng., Cambridge, MA, 1983.
  27. Bernal D. and Youssef, A., “A hybrid time frequency domain formulation for non-linear soil-structure interaction,” Earthquake Eng. and Structural Dynamics, Vol. 27, 1998, pp. 673-685. https://doi.org/10.1002/(SICI)1096-9845(199807)27:7<673::AID-EQE751>3.0.CO;2-3
  28. Dardre, G. R. and Wolf, J. P., “Criterion of stability and implementation of hybrid frequency-time-domain procedure for nonlinear dynamic analysis,” Earthquake Eng. and Structural Dynamics, Vol. 16, 1988, pp. 569-581. https://doi.org/10.1002/eqe.4290160408
  29. Hayashi, Y. and Katukura, H., “Effective time-domain soil-structure interaction analysis based on FFT algorithm with causality condition,” Earthquake Eng. and Structural Dynamics, Vol. 19, 1990, pp. 693-708. https://doi.org/10.1002/eqe.4290190506
  30. Hayashi, Y. and Katukura, H., “An efficient time-domain soil-structure interaction analysis based on dynamic stiffness of an unbounded soil,” Earthquake Eng. and Structural Dynamics, Vol. 21, 1992, pp. 787-798. https://doi.org/10.1002/eqe.4290210904
  31. 김재민, 윤정방, 김두기, “유한요소-무한요소를 사용한 2차원 지반-구조물계의 주파수영역 지진응답해석법,” 한국전산구조공학회 논문집, 제10권, 제2호, 2000, pp. 231-244.
  32. An, X. and Maekawa, K., “Failure of underground RC frame subjected to seismic actions,” J. Materials, Conc. Struct., Pavements, JSCE, Vol. 36. No. 571, 1997, pp. 251-267.
  33. SAS IP. Inc., ANSYS User's Manual -- Version 5.6, 1999.
  34. Mander, J. B., Priestley, M. J. N. and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, Vol. 114, No. 8, 1988, pp. 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  35. Paulay, T. and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc., New York, 1992.
  36. 정연주, 유영찬, “소성거동을 고려한 RC 구조물의 간략화 해석모델에 관한 연구”, 한국전산구조공학회 논문집, 제13권, 제3호, 2000, pp. 361-371.