DOI QR코드

DOI QR Code

쥐의 간 발암과정에서 N-3, N-6 지방산 섭취 및 d-Limonene 투여가 생체막 지질조성 및 Protein Kinase C 활성도에 미치는 영향

Effect of N-3, N-6 Fatty Acid and d-Limonene Treatment on Membrane Lipid Composition and Protein Kinase C Activity in Experimental Rat Hepatocarcinogenesis

  • 발행 : 2003.12.01

초록

본 연구는 우리나라에서 발병률이 높은 간암의 발생과정에서 정어리유와 d-limonene의 섭취가 미치는 영향을 세포막 지질조성 및 PKC활성도를 통해 조사하여 이들의 항암 작용관련 기전을 규명 하고자 하였다. 따라서 이유된 흰쥐를 지방산 조성이 아주 다른 옥수수유, 정어리유를 15% 수준으로 공급하고 d-limonene 섭취군은 5%수준으로 공급하여 실험군에서는 발암물질인 DEN을 2회 복강 주사하고 PB를 물에 섞어 주어 20주간 사육하여 membrane fraction의 지방산 조성 및 지질의 조성, glutathione-S-transferase, PKC 활성도를 조사하여 아래와 같은 결과를 얻었다. 간 세포막의 콜레스테롤과 인지질 함량에 대한 C/PL ratio는 옥수수유군에서 발암물질 투여나 d-limonene의 섭취에 따른 효과가 없었으나 정어리 유군에서는 발암물질 투여시, d-limonene 섭취시 유의적인 감소를 나타내어 식이지방의 종류에 따라 발암물질과 d-limonene의 작용이 차이가 있는 것으로 나타났다. Membrane fraction의 인지질 조성은 CL을 제외한 PE, PI, PG, PC, PS와 PE/PC ratio등 모두에 있어서 식이지방의 종류, 발암물질의 투여, d-liomnene섭취에 따른 차이가 나타나지 않았다. 세포막의 지방산 조성을 나타내는 n-6/n-3 ratio가 정어리유군에서 옥수수유군보다 유의적으로 낮았고, 옥수수유군에서는 발암물질 투여나 d-limonene의 섭취에 따라 유의적으로 증가했으나 정어리유군에서는 발암물질과 d-limonene에 의한 차이가 없었다. Cytosolic PKC의 활성은 식이지방의 종류와 발암물질 투여에 따른 차이는 없었고, d-limonene의 섭 취에 따라 유의적 감소를 나타냈으며, 막부착 PKC의 활성은 옥수수유군에서 유의적으로 높았고, d-limonene 섭취에 따라 감소 경향을 발암물질 투여에 따라서는 증가 경향을 보였으나 유의적인 차이를 나타내지는 않았다. GST활성은 식이 지방의 종류에 따른 차이는 없었으나 발암물질 투여와 d-limonene 섭취에 따라 유의적으로 증가하였으며, 발암물질과 d-limonene을 같이 공급시에 더욱 더 유의적으로 증가하였다. 이상의 실험 결과를 종합에 보면 암화과정에 일어나는 지방의 대사가 식이지방의 종류에 따라 차이를 보이며, 특히 정어리유군에서 d-limonene에 의한 C/PL ratio가 감소하여 막 유동성에 변화를 초래하고, 이에 따라 membrane bound enzyme의 활성에 변화를 가져오는 것으로 생각된다. 따라서 식이지방의 종류가 암의 발생에 미치는 영향이 다르고, 막부착 PKC 활성도를 감소시켜 발암을 억제하는 효과가 있으며, 이 효과는 지방의 종류에 따라 차이가 있는 것으로 생각된다. 최근 n-3 지방산이나 d-limonene이 PKC expression을 감소시키고, apopotosis 촉진 단백질의 발현을 증가시켜 tumor cell의 apoptosis를 증가시킨다고 하여 n-3 지방산과 d-limonene의 또 다른 발암억제기전을 설명하고 있다. 그러나 n-3 지방산과 d-limonene의 상호효과에 대한 연구는 부족한 실정이므로 d-limonene과 n-3 지방산의 교호작용에 의한 발암억제 기전에 대해서는 더 많은 연구가 필요하다고 하겠다.

This study was done to investigate the effects of n-3, n-6 fatty acid and d-limonene on the hepatic membrane lipid composition, protein kinase C (PKC) and glutathione S-transferase (GST) activities in experimental rat hepatocarcinogenesis. Sprague-Dawley female rats were fed with two different types of dietary oil for 20 weeks. Corn oil (CO) and sardine oil (SO) were used at 15% by weight as a source of n-6 and n-3 fatty acid, respectively. One week after feeding, rats were intraperitoneally injected twice with a dose of diethylnitrosamine (DEN, 50 mg/kg body weight) and after 1 week 0.05% phenobarbital (PB) was provided with drinking water. Membrane fractional lipid composition showed that the content of cholesterol was higher in 50 group than CO group and also significantly decreased by d-limonene. The content of phospholipid was increased by carcinogen treatment but not affected by dietary oils or d-limonene. Membrane C/PL molar ratio was significantly decreased by d-limonene or carcinogen treatment in 50 groups but not in CO groups. Fatty acid composition was changed by dietary oils but not by carcinogen treatment or d-limonene. Cytosolic PKC activity was not significantly different by dietary oils, d-limonene or carcinogen treatment. However, membrane PKC activity was significantly increased by carcinogen treatment and decreased by d-limonene. Cytosolic GST activity was affected by d-limonene or carcinogen treatment in all dietary groups. These data indicate that dietary oils, d-limonene and carcinogen treatment can not change much membrane phospholipid composition. But membrane C/PL molar ratio was changed by carcinogen treatment and d -limonene although the effect was different between dietary oils. Therefore, it is suggested that different dietary oils and d-limonene can somewhat modulate the changes of membrane fluidity and activities of membrane bound enzymes like membrane associated PKC during carcinogenesis.

키워드

참고문헌

  1. WHO. 2002. Nutrition and lifestyle: opportunities for cancer prevention. IARC press, Lyon. Vol 156.
  2. Birt DF. 1990. The influence of dietary fat on carcinogenesis: Lessions from experimental models. Nutr Rev 48: 1-5. https://doi.org/10.1111/j.1753-4887.1990.tb02870.x
  3. Bartsch H, Nair J, Owen R. 1999. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their roles as risk modifiers. Carcinogenesis 20: 2209-2218. https://doi.org/10.1093/carcin/20.12.2209
  4. Roynette CE, Calder PC, Dupertuis YM, Pichard C. 2003. N-3 polyunsaturated fatty acids and colon cancer prevention. Clinical Nutrition, In Press.
  5. Blobe GC, Obeid LM, Hannun YA. 1994. Regulation of protein kinase C and role in cancer biology. Cancer Metastasis Rev 13: 411-431. https://doi.org/10.1007/BF00666107
  6. Blumberg PM. 1988. Protein kinase C as the receptor for the phorbol ester tumor promotors. Cancer Res 48: 1-8.
  7. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. 1982. Direct activation of calcium activated, phospholipid-dependent protein kinase by tumor promoting phobol esters. J Biol Chem 2557: 7847-7851.
  8. Nair SSD, Leitch J, Garg ML. 2001. N-3 polyunsaturated fatty acid supplementation alters inositol phosphate metabolism and protein kinase C activity in adult porcine cardiac myocytes. J Nutr Biochem 12: 7-13. https://doi.org/10.1016/S0955-2863(00)00139-X
  9. Law MR. 1992. Serum cholesterol and cancer. Br J Cancer 65: 307-308. https://doi.org/10.1038/bjc.1992.63
  10. Siperstein MD, Fagan VM. 1964. Deletion of the cholesterolnegative feedback system in liver tumor. Cancer Res 24: 1108-1115.
  11. Rao CV, Newmark HL, Reddy BS. 2002. Chemopreventive effect of farnesol and lanosterol on colon carcinogenesis. Cancer Detect Prev 26: 419-425. https://doi.org/10.1016/S0361-090X(02)00119-8
  12. Crowell PL, Gould MN. 1994. Chemoprevention and therapy of cancer by d-lim onene. CRC Crit Rev Oncogen 5: 1-22. https://doi.org/10.1615/CritRevOncog.v5.i1.10
  13. Kawata S, Nagase T, Yamasaki E, Ishiguro H, Matsuzawa Y. 1994. Modulation of the mevalonate pathway and cell growth by provastatin and d-limonene in a human hepatoma cell line (Hep G2). Br J Cancer 69: 1015-1020. https://doi.org/10.1038/bjc.1994.199
  14. Clegg RJ, Middleton B, Bell GD White BA. 1982. The mechanism of cyclic monoterpene of inhibition of hepatic HMG CoA reductase in vivo in the rat. J Biol Chem 257: 2294-2299.
  15. Crowell PL, Chang PR, Ren Z, Elson CE, Gould MN. 1991. Selective inhibition of isoprenylation of 21-26-KDa proteins by the anticarcinogen d-limonene and its metabolites. J Biol Chem 266: 17679-17685.
  16. Jang JJ, Lee YS, Lee MS, Kim TH. 1994. Development of GST-P+ foci in 3week old rats induced by diethylnitrosamine: Preliminary data for liver foci model. J Korean Cancer 26: 23-235.
  17. Hard GC, Whysner J. 1994. Risk assessment of d-limonene: an example of male rat-specific renal tumorigens. Critical Rev Toxicol 24: 231-254. https://doi.org/10.3109/10408449409021607
  18. Rao GN. 1988. Rodent diets of carcinogenesis studies. J Nutr 118: 929-931.
  19. American Institute of Nutrition. 1977. Report of the AIN Ad Hoc Committee on standards for nutritional studies. J Nutr 107: 1340-1348.
  20. Masmoudi A, Labourdette G, Mersel M, Huang FL, Huang KP, Vincendon G, Malviya AN. 1989. Protein kinase C located in rat liver nuclei. J Biol Chem 264: 1172-1179.
  21. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917. https://doi.org/10.1139/o59-099
  22. Sale FD, Marchesini S, Fishman PH, Berra B. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Anal Biochem 142: 347-350. https://doi.org/10.1016/0003-2697(84)90475-5
  23. Patton GM, Fasulo JM, Robin SJ. 1982. Separation of phospholipids and individual molecular species of phosphilpids by high-perfomance liquid chromatography. J Lipid Res 23: 190-196.
  24. Metcalfe LD, Schmitz AA, Pelka JR. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38: 514-515. https://doi.org/10.1021/ac60235a044
  25. Yasuda I, Kishimoto A, Tanaka S, Tominaga M, Sakurai A, Nishizuka Y. 1990. A synthetic peptide substrate for selective assay of protein kinase C. BBRC 166: 1220-1227.
  26. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferase: The first enzymatic steps in mercapturic acid formation. J Biol Chem 249: 7130-7139.
  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RT. 1951. Protein measurement with the Folin-Phenol reagent. J Biol Chem 193: 265-275.
  28. Tisdale MJ, Dhesi JK. 1990. Inhibition of weight loss by $\omega$-3 fatty acids in an experimental cachexia model. Cancer Res 50: 5022-5026.
  29. Lee MS, Kim JH. 1993. Effects of different dietary oils on hepatic mitochondrial lipid composition, adenine nucleotide translocase and ATPase activities in catcinogen treated rats. Korean J Nutrition 26: 532-546.
  30. Kawata S, Yakaishi K, Nagase T, Ito N, Matsuda Y, Tamura S, Matsuzawa Y, Tarui S. 1990. Increse in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human hepatocellular carcinoma: Possible mechanism for alteration of cholesterol biosynthesis. Cancer Res 50: 3270-3273.
  31. Innis SM, Clandinin MT. 1981. Mitochodrial-membrane polar-head-group composition is influenced by diet fat. Biochem J 198: 231-234.
  32. Daum G. 1985. Lipids of mitochondra. Biochim Biophys Acta 822: 1-42. https://doi.org/10.1016/0304-4157(85)90002-4
  33. Kessler AR, Kessler B, Yehuda S. 1985. Changes in the cholesterol level, cholesterol-to-phospholipid mole ratio, and membrane lipid microviscosity in rat brain induced by age and a plant oil mixture. Biochem Pharmacol 34: 1120-1121. https://doi.org/10.1016/0006-2952(85)90620-3
  34. Lee MS, Kim JH. 2000. Effects of different dietary oil and d-limonene on histopathological and biochemical changes in experimental hepatocarcinogenesis. Korean J Nutr 33: 23-32.
  35. Hargreaves KM, Pehowich DJ, Clandinin MT. 1989. Effect of dietary lipid composition on rat liver microsomal phosphatidylcholine synthesis. J Nutr 119: 344-348.
  36. Robblee NM, Clandinin MT. 1984. Effect of dietary fat level and polyunsaturated fatty acid content on the phospholipid composition of rat cardiac mitochondrial membrandes and mitochondrial ATPase activity. J Nutr 114: 263-269.
  37. Mally A, Chipma JK. 2002. Non-genotoxic carcinogen: early effects on gap junctions cell proliferation and appotosis in the rat. Toxicology 180: 233-248. https://doi.org/10.1016/S0300-483X(02)00393-1