The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream

광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성

  • Yoon, Wook (Korea Institute of Geoscience and Mineral Resources) ;
  • Ji, Se-Jung (Korea Institute of Geoscience and Mineral Resources) ;
  • So, Chil-Sub (Department of Earth and Environmental Sciences, Korea University)
  • 윤욱 (한국지질자원연구원) ;
  • 지세정 (한국지질자원연구원) ;
  • 소칠섭 (고려대학교 지구환경과학과)
  • Published : 2003.12.01

Abstract

The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

광주지역의 지하수는 주로 Ca-$HCO_3$, Ca-Na-$HCO_3$, Ca-Na-$HCO_3$-Cl 유형의 다양한 수질을 보여준다 그러나 광주천인근 지하수는 50mg/L 이상의 비교적 높은 $Cl^-$농도를 보이고, EC는 400${\mu}s$/cm 이상의 값을 나타내며, Ca-Cl 유형의 수질 특성을 보이고 있다. 일부 지역에서는 하천과 인근 지하수 관정 사이의 거리에 따라서 $Cl^-$, $HCO_3^-$/의 농도, EC와 ${\gamma}^{18}O$ 값이 체계적으로 변화하여 하천수의 지하유입이 확인되고 있다. 안정동위원소 연구결과, 광주지역 전체 지하수의 ${\gamma}^{18}O$ 값의 범위는 -9.2∼-5.5${\textperthansand}$ 이나 광주 동남부 고지대에서는 비교적 가벼운 값(>-8${\textperthansand}$)을 나타내나, 저지대 층적층이 분포된 하천 인근 지하수에서는 -6${\textperthansand}$ 보다 무거운 ${\gamma}^{18}O$ 값이 분포 경향을 보인다. 하천 인근에서 채취된 14개 지하수 시료 사이에는 ${\gamma}$D 및 ${\gamma}^{18}D$ 값이 ${\gamma}D{=}7.1{\times}{\gamma}^{18}O$-1의 관계를 보여 증발작용에 의한 동위원소 비평형을 나타내나, 하천수와 인근 지하수의 ${\gamma}^{18}O$값은 일부 지역에서 하천수 유입에 의한 체계적인 분별효과를 나타내기도 한다. 하천 인근 지하수의 DIC(용존무기탄산염)에 대한 ${\gamma}^{13}C$ 값은 -17.6∼15.2${\textperthansand}$로써 매우 가벼운 값을 나타내며, 토양 유기물 기원의 $CO_2$실 영향이 우세한 것으로 확인되었다. $NO_3^-$에 대한 ${\gamma}^{15}N$${\gamma}^{18}O$ 값은 각 0∼17.0${\textperthansand}$ 및 6.6∼17.4${\textperthansand}$로써 토양의 질산염, 생활하수 및 분뇨 기원의 질소가 혼합된 것으로 나타나고 있으며 대부분 시료는 탈질 화작용이 약 40∼60%까지 진행되면서 ${\gamma}^{15}N$${\gamma}^{18}O$ 값의 체계적인 분별효과가 야기되었다.

Keywords

References

  1. 환경백서 광주광역시
  2. 지하수조사연보 건설교통부
  3. 한국지구과학회지 v.20 광주광역시 지하수에 대환 환경오염실태와 지구화학적 특성 연구 박천영;신인현;안건상;이창신;정연중;최낙철
  4. 전남대 박사학위논문 국내 화강암질 및 해수 침투지역의 지하수 오염에 관한 환경지구화학적 연구 박희열
  5. 광주지역 지하수 오염 개선 연구 성익환;조병욱;이봉주;이춘오;이병대;류충렬;윤욱;김통권;임현철;음철헌;지세정;전치완;송경선;이병태;이종철;김경수;김상연;성기성
  6. 과학기술처, KR-95(B)-14 현장수질분석 시스템 개선 및 체계화 연구 송덕영;박진태;김상연
  7. 한국지하수토양환경학회지 v.6 광주 본촌지역의 지하수의 수화학적 특성과 오염 양해근;김인수;최희철;김정우
  8. 고려대 석사학위 논문 Effect of lnd-use characteristics on urban groundwater quality, Seoul metropolitan city, Korea 유순영
  9. 한국지하수토양환경학회지 v.7 광주광역시 지하수의 수리지화확적 특성연구 이인호;조병욱;이병대;성익환;임용수
  10. 자원환경지질 v.32 경북 청송지역 달기 탄산약수의 지화학적 수질 특성과 생성 기원 정찬호;정기영
  11. Use of multiple isotope tracers to ebaluate denitrification in groundwater: case study of nitrate from a large-flux Aravena,R.;Robertson,W.D.
  12. Quaternary Research v.37 Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating Aravena,R.;Warner,B.G.;MacDonald.G.M.;Hanf,K.I. https://doi.org/10.1016/0033-5894(92)90071-P
  13. SWS Contract Report 374 Practical guide for groundwater sampling Barcelona,M.J.;Gibb,J.P.;Helfrich,J.A.;Garske,E.E.
  14. J. Hydrol. v.114 Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer Bottcher,J.;Strebel,O.;Voerkelius,S.;Schmidt,H.L. https://doi.org/10.1016/0022-1694(90)90068-9
  15. J. Human Evol. v.21 Fossil soils, grasses, and carbon isotopes from Fort Ternan, Kenya: grassland or woodland Cerling,T.E.;Quade,J.;Ambrose,S.H.;Sikes,N.E. https://doi.org/10.1016/0047-2484(91)90110-H
  16. Canadian Journal of Fisheries and Aquatic Science v.56 A method for nitrate collecion for ${\delta}^{15}$N and ${\delta}^{18}$O analysis from waters with low nitrate conncentrations Chang,C.C.;Langston,J.;Riggs,M.;Campbell,D.H.;Silva,S.R.;Kendall,C. https://doi.org/10.1139/cjfas-56-10-1856
  17. Environmental isotopoes in hydrogeology Clark,I.D.;Fritz,P.
  18. Anal. Chem. v.54 Reduction of water with zinc for hydrogen isotope analysis Coleman,M.C.;Sheperd,T.J.;Durham,J.J.;Rouse,J.E. https://doi.org/10.1021/ac00243a035
  19. Geochim. Cosmochim. Acta v.3 The geochemistry of stable carbon Isotopes Craig,H. https://doi.org/10.1016/0016-7037(53)90001-5
  20. Handbook of Environmental Isotope Geochemistry, Volume 1, The Terrestrial Environment The isotopic composition of reduced organic carbon Deines,P.;P.Fritz(ed.);J.Fontes(ed.)
  21. Acta carsologica v.29 no.1 A stable isotope investigation of the classical karst aquifer: Evaluating karst groundwater components for water quality predentation Doctor,D.H.;Lojeni,S.;Horvati,M.
  22. Applied hydrogeology Fetter,C.W.
  23. Anal. Chem. v.62 Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water Kendall,C.;Grim,E. https://doi.org/10.1021/ac00204a019
  24. Biogeochemistry of Seasonally Snow-Covered Catchments, Intern. Assoc. Hydrol. Sci., Proceedings Tracing sources of nitrate in snowmelt runoff using the oxygen and nitrogen isotopic compositions of nitrate Kendall,C.;Campbell,D.H.;Burns,D.A.;Shanley,J.B.;Silva,S.R.;Chang,C.C.Y.;K.Tonnessen(ed.);M.Williams(ed.);M.Tranter(ed.)
  25. Geochim. et Cosmochim. Acta v.61 Intermittent denitrification: the application of a 15N natural abundance method to a forested ecosystem Koba,K.;Tokuchi,N.;Wada,E.;Nakajima,T.;Iwatsubo,G. https://doi.org/10.1016/S0016-7037(97)00284-6
  26. CSIRO Land and Water, Technicl Report 27 Stream-Groundwater Interaction: The River Murray at Hattah-Kulkyne Park, Victori: Summary of Results Lamontagne,S.;Leaney,F.;Herczeg,A.
  27. Handbook of Environmental Isotope Geochemistry v.1 Nitrogen-15 in the natural environment Letolle,R,;Fritz,P.(ed.);Fontes,J.Ch.(ed.)
  28. Environmental Chemistry Manahan,S.E.
  29. Geochim. Cosmochim. Acts v.52 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to chalk aquifer of northern France Mariotti,A.;Landreau,A.;Simon,B. https://doi.org/10.1016/0016-7037(88)90010-5
  30. Biogeochemistry v.57;58 Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints Mayer,M.;Boyer,F.;Goodale,C.;Jaworski,N.A.;Bremenn,N.V.;Howarth,R.;Seitzinger,S.;Billen,G.;Lajtha,K.;Nadekhoffer,K.;Dam,D.V.;Hetling,L.J.;Norsal,M.;Paustian,K.
  31. Limnology v.3 Escape of volcanic gas into shallow groundwater systems at Unzen Volcano (Japan): evidence from chemical and stable carbon isotope compositions of dissolved inorganic carbon Ohsawa,S.;Kazahaya,K.;Yasuhara,M.;Kono,T.;Kitaoka,K.;Yusa,Y.;Yamaguchi,K. https://doi.org/10.1007/s102010200020
  32. TNO-report NITG 00-143-B A new proess-based hydro-geochemical classification of groundwater Pannatier,E.G.;Broeers,H.P.;Venema,P.;Beusekom,G.
  33. Illinos Groundwater consortium Conference Application of nitrogen and oxygen isotopes to identify sources of nitrate Roadcap,G.S.;Hackley,K.C.;Hwang,H.H.;Johnson,T.M.
  34. Redox Schring,J.(ed.);Schulz,H.D.(ed.);Fisher,W.R.(ed.);Bottcher,J.(ed.);Guijnisveld,W.H.M.(ed.)
  35. Natural Process Effecting Water Composition in the Taieri Region Scott,H.
  36. Jour. of Hydrol. v.228 A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios Silva,S.R.;Kendall,C.;Wilkison,D.H.;Ziegler,A.C.;Chang,C.C.Y.;Avanzino,R.J. https://doi.org/10.1016/S0022-1694(99)00205-X
  37. Jour. of Hydrol. v.124 Salinity and evaporation in the River Murray basin, Australia Simpson,H.J.;Herczeg,A.L. https://doi.org/10.1016/0022-1694(91)90003-Z
  38. Water Resources Investigations Roport 99-4200 Interaction of streams and ground water in selected tributaries of the Republican river, Nebraska, 1998-99. Steele,G.V.
  39. PhD. Thesis, Vrije Universiteit Hydrochemistry and hydrology of the coastal dune area of the Western Netherlands Stuyfzand,P.J.
  40. 7th Symposium on Water Tracing, Acta Carsologica v.24 Dissolved inorganic carbon isotope composition of waters Urbanc,J.;Trek,B.;Pezdi,J.;Lojen,S.
  41. Stable Isotopes and Plant Carbon-Water Relations Variability of carbon isotope fractionation during photosynthesis Vogel,J.C.;J.R.Ehleringer(ed.);A.E.Hall(ed.);G.D.Farquhar(ed.)
  42. International symposium on biofouled aquifers: prevention and restoration Groundwater biogeochemistry of iron and manganese in relation to well water quality Vuorinen,A.;Carlson,L.;Tuovinen,O.H.;Cullimore,D.R.(ed.)
  43. Geochemical Journal v.9 15N abundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic view of point Wada,E.;Kadonaga,T.;Matsuo,S. https://doi.org/10.2343/geochemj.9.139
  44. Applied Geochemistry v.10 Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of $^{15}N$ and $^{18}O$ in $NO_3^-$ Wassenaar,L. https://doi.org/10.1016/0883-2927(95)00013-A
  45. Jour. of Hydrol. v.112 Seasonal fluctuations in 15N of groundwater nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate Wells,E.R.;Krothe,N.C. https://doi.org/10.1016/0022-1694(89)90188-1
  46. California. Environ. Sci. Technol. v.32 Natural and anthropogenic nitrate contamination of groundwater in a rural community Williams,A.E.;Lund,L.J.;Johnson,J.A.;Kabala,Z.J. https://doi.org/10.1021/es970393a
  47. Enviromental Isotopes in the Hydrological Cycle Principles and Aplications, VolumeⅠ: introduction, theory, methods, review Willem,G.M.;Vries,J.J.
  48. Nature v.317 Oxygen isotope ratios in N₂O from vitrification at a wastewater treatment facility Yoshinari,T.;Wahlene,M. https://doi.org/10.1038/317349a0