DOI QR코드

DOI QR Code

Support Vector Learning for Abnormality Detection Problems

비정상 상태 탐지 문제를 위한 서포트벡터 학습

  • Published : 2003.06.01

Abstract

This paper considers an incremental support vector learning for the abnormality detection problems. One of the most well-known support vector learning methods for abnormality detection is the so-called SVDD(support vector data description), which seeks the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this paper is to modify the SVDD into the direction of utilizing the relation between the optimal solution and incrementally given training data. After a thorough review about the original SVDD method, this paper establishes an incremental method for finding the optimal solution based on certain observations on the Lagrange dual problems. The applicability of the presented incremental method is illustrated via a design example.

본 논문은 비정상 상태 탐지 문제를 위한 점증적 서포트 벡터 학습을 다룬다. 비정상상태 탐지를 위한 서포트 벡터 학습 중 가장 잘 알려진 기법 중 하나는 SVDD(support vector data description)인데, 이 기법은 정상적인 데이터의 집합을 모든 가능한 비정상 개체로부터 구분하기 위하여 커널 특징공간(kernel feature space) 위에서 정의되는 볼(ball)을 이용하는 전략을 추구한다. 본 논문의 주된 관심사는 최적해와 점증적으로 주어지는 학습 데이터의 상관관계를 이용하는 방향으로 SVDD 기법을 수정하는 것이다. 본 논문에서는, 기존의 SVDD 기법을 상세히 복습한 후에, 라그랑제 쌍대 문제(Largrange dual problem)에 관한 관찰을 바탕으로 최적 해를 찾기 위한 점증적 풀이 기법을 제시한다. 그리고, 제시된 점증적 방법론의 적용 가능성이 예제를 통하여 보여진다.

Keywords

References

  1. N. Cristianini an J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.
  2. B. Scholkopf and A. J. Smola, Learning with Kernels, MIT Press, 2002.
  3. C. Bishop, "Novelty detection and neural networks validation," lEE Proceedings on Vision, Image, and Signal Processing, Special Issue on Applications of Neural Networks, vol. 141, pp. 217-222, 1994. https://doi.org/10.1049/ip-vis:19941330
  4. D. Tax and R. Duin, "Support Vector Domain Description," Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999. https://doi.org/10.1016/S0167-8655(99)00087-2
  5. D. Tax, One-Class Classification, PhD Thesis, Delft University of Technology, 2001.
  6. B. Scholkopf, J. C. Platt, and A. J. Smola, Kernel Method for Percentile Feature Extraction, Technical Report MSR-TR-2000-22, Microsoft Research, WA, 2000.
  7. B. Scholkopf, J. C. Platt, J. Shawe-Taylor, and A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural Computation, vol.13, pp. 1443-1471, 2001. https://doi.org/10.1162/089976601750264965
  8. G. Ratch, S. Mika, B. Scholkopf, and K-R. Muller, "Constructing boosting algorithms from SVMs: An application to one-class classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 1-15, 2002. https://doi.org/10.1109/34.982881
  9. C. Campbell and K. P. Bennett, "A linear programming approach to novelty detection," Advances in Neural Information Processing Systems (NIPS 2000), vol. 13, pp. 395-401, 2001.
  10. D. Tax and P. Juszczak, "Kernel whitening for one-class classification," Pattern Recognition with Support Vector Machines, pp. 40-52, 2002.
  11. G. Cauwenberghs and T. Poggio, "Incremental and Decremental Support Vector Machine Learning," Advances in Neural Information Processing Systems (NIPS 2000), vol. 13, pp. 409-415, 2001.
  12. T. K Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice-Hall, 2000.
  13. J. Platt, "Fast training of support vector machines using sequential minimum optimization," In Advances in Kernel Methods - Support Vector Learning, pp. 185-208, MIT Press, 1999.

Cited by

  1. Self-diagnostic system for smartphone addiction using multiclass SVM vol.24, pp.1, 2013, https://doi.org/10.7465/jkdi.2013.24.1.13
  2. Abnormality detection via SVDD technique of motor-generator system in HEV vol.15, pp.4, 2014, https://doi.org/10.1007/s12239-014-0066-y
  3. Intelligent algorithm based on support vector data description for automotive collision avoidance system vol.18, pp.1, 2017, https://doi.org/10.1007/s12239-017-0007-7