DOI QR코드

DOI QR Code

양극산화를 이용한 알루미나 나노세공 멤브레인의 제조

Fabrication of Alumina Membrane Using Anodic Oxidation Process

  • 임완순 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조경철 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조유석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 최규석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 김도진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실)
  • Im, W.S. (Department of Materials Engineering, Chungnam National University) ;
  • Cho, K.C. (Department of Materials Engineering, Chungnam National University) ;
  • Cho, Y.S. (Department of Materials Engineering, Chungnam National University) ;
  • Choi, G.S. (Department of Materials Engineering, Chungnam National University) ;
  • Kim, D.J. (Department of Materials Engineering, Chungnam National University)
  • 발행 : 2003.09.01

초록

Anodic aluminum oxide (AAO) membrane was made of aluminum sheet (99.6%, 0.2 mm thickness). The regular array of hexagonal nano pores or channels were prepared by two step anodization process. A detail description of the AAO fabrication is presented. After the 1st anodization in oxalic acid (0.3 M) at 45 V, The formed AAO was removed by etching in a solution of 6 wt% $H_3$$PO_4$+1.8 wt% $H_2$$CrO_4$. The regular arrangement of the pores was obtained by the 2nd anodization, which was carried out in the same condition as the 1st anodization. Subsequently, the alumina barrier layer at the bottom of the channel layer was removed in phosphoric acid (1M) after removing of aluminum. Pore diameter, density, and thickness could be controlled by the anodization process parameters such as applied voltage, anodizing time, pore widening time, etc. The pore diameter is proportional to the applied voltage and pore widening time. The pore density and thickness can be controlled by anodization temperature and voltage.

키워드

참고문헌

  1. R. C. Furneaux, W. R. Rigby and A. P. Davidson, Nature, 337, 147 (1989) https://doi.org/10.1038/337147a0
  2. H. Masuda and K. Fukuda, Science, 268, 199 (1995) https://doi.org/10.1126/science.268.5216.1466
  3. H. Masuda and M. Satoh, Jpn. J. Appl. Phys., 35, L126 (1996) https://doi.org/10.1143/JJAP.35.L126
  4. Y. C. Sui, J. A. Gonzalez-Leon, A. Bermudez and J. M. Saniger, Carbon, 39, 1709 (2001) https://doi.org/10.1016/S0008-6223(00)00297-9
  5. T. Iwasaki, T. Motoi and T. Den, Appl. Phys. Lett., 75, 2044 (1999) https://doi.org/10.1063/1.124910
  6. A. J. Yin, J. Li, W. Jian, A. J. Benett and J. M. Xu, Appl. Phys. Lett., 79, 1039 (2001) https://doi.org/10.1063/1.1389765
  7. Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu and X. Bao, Solid State Communications, 123, 279 (2002) https://doi.org/10.1016/S0038-1098(02)00304-6
  8. V. P. Parkhutic and V. I. Shershulsky, Appl. Phys., 25, 1258 https://doi.org/10.1088/0022-3727/25/8/017
  9. M. M. Lohrengel, Mater. Sci. Eng., R11, 243 (1993) https://doi.org/10.1016/0927-796X(93)90005-N
  10. O. F. Li, L. Zhang and R. M. Metzger, Chem. Mater., 10, 2470 (1998) https://doi.org/10.1021/cm980163a
  11. J. W. Diggle, T. C. Downie and C. W. Goulding, Chem. Rev., 69, 365 (1969) https://doi.org/10.1021/cr60259a005
  12. K. Shinizu, K. Kobayashi, P. Skeldon, G. E. Thompson and G. C. Wood, Corrosion Sci., 39, 701 (1997) https://doi.org/10.1016/S0010-938X(97)89337-7
  13. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, Solid State Electronics, 43, 1143 (1999) https://doi.org/10.1016/S0038-1101(99)00037-4
  14. O. Jessensky, F. Muller and U. Gosele, https://doi.org/10.1063/1.121004