DOI QR코드

DOI QR Code

스크린 인쇄법을 이용한 NASICON 후막 SO2가스 센서의 제조 및 특성

Fabrication and Sensing Properties of NASICON Thick Film SO2 Gas Sensor Using Screen-print Method

  • 배재철 (경북대학교 재료금속공학과) ;
  • 이상태 (경북대학교 재료금속공학과) ;
  • 전희권 (경북대학교 재료금속공학과) ;
  • 방영일 (경북대학교 전자공학과) ;
  • 이덕동 (경북대학교 전자공학과) ;
  • 허증수 (경북대학교 재료금속공학과)
  • Bae, J.C. (Dept. of Materials Science and Metallurgy, Kyungpook National University) ;
  • Lee, S.T. (Dept. of Materials Science and Metallurgy, Kyungpook National University) ;
  • Jun, H.K. (Dept. of Materials Science and Metallurgy, Kyungpook National University) ;
  • Bang, Y.I. (Dept. of Electronic and Electrical Eng., Kyungpook National University) ;
  • Lee, D.D. (Dept. of Electronic and Electrical Eng., Kyungpook National University) ;
  • Huh, J.S. (Dept. of Materials Science and Metallurgy, Kyungpook National University)
  • 발행 : 2003.02.01

초록

The thick film type sensor having Pt/Na Super Ionic Conductor(NASICON) solid electrolyte/Pt/$Na_2$$SO_4$/Pt catalyst system for $SO_2$gas was fabricated by screen-print method. The phase of Na Super Ionic Conductor solid electrolyte sintered at different temperature of 1050, 1150,$ 1250^{\circ}C$ and for different time of 1.5, 2.5, 3.5 hr were investigated by XRD. The Electromotive Force variation of the sensor with $SO_2$concentrations and operating temperatures were investigated. The major phase of Na Super Ionic Conductor film sintered at 115$0^{\circ}C$ for 3.5 hr was sodium zirconium silicon phosphate($Na_3$Zr$_2$$Si_2$PO$_{12}$). The Nernst's slope of Na Super Ionic Conductor sensor for $SO_2$gas with the variation of concentration from 10 to 100 ppm was 167.14 ㎷/decade at the operating temperature of $500 ^{\circ}C$. The increase of oxygen partial pressure was not affected to the variation of Nernst's slope.e.

키워드

참고문헌

  1. ?Y. Saito, K. Kobayashi and T. Maruyamam, Solid State Ionics, 3-4, 393 (1981) https://doi.org/10.1016/0167-2738(81)90119-3
  2. M. Gauthier and A. Cahmberland, Journal of Electrochem. Soc., 124, 1579 (1977) https://doi.org/10.1149/1.2133113
  3. M. Itoh and Z. Kozuka, Journal of Electrochem. Soc., 133, 1512 (1986) https://doi.org/10.1149/1.2108946
  4. Soon-Don Choi, Wan-Young Chung and Duk-Dong Lee, Sensors and Actuators B, 35, 263, (1996) https://doi.org/10.1016/S0925-4005(97)80079-2
  5. A. Ahamd, C. Glasgow and T. A. Wheat, Solid State Ionics, 76, 143 (1995) https://doi.org/10.1016/0167-2738(94)00238-N
  6. H. Khireddine, P. Fabry, A. Caneiro and B. Bochu, Sensors and Actuators B, 40, 223 (1997) https://doi.org/10.1016/S0925-4005(97)80266-3
  7. N. Miura, S. Yao, S. Shimizu and N. Yamazoe, Sensors and Actuators B, 3, 165 (1992) https://doi.org/10.1016/0925-4005(92)80211-F
  8. Cheol-Jin Kim, Jun-Ki Chung, Sung-Ki Lim and Meung-Ho Rhee, The Korean journal of ceramics, 2, 25 (1996)
  9. J. P. Boilet and J. P. Salanie, G. Desplancher and D. Le Potier, ' Mater. Res. Bull., 14, 1469 (1979) https://doi.org/10.1016/0025-5408(79)90091-6
  10. Tetsuya Kida, Yuji Miyachi, Kengo Shimanoe and Noboru Yamazoe, Sensors and Actuators B, 80, 28 (2001) https://doi.org/10.1016/S0925-4005(01)00878-4
  11. Youichi Shimizu and Takashi Ushijima, Solid State Ionics, 132, 143 (2000) https://doi.org/10.1016/S0167-2738(00)00703-7
  12. T. Lang, M. Caron, R. Izquierdo, D. Ivanov, J. F. Currie and A. Yelon, Sensors and Actuators B, 31, 9 (1996) https://doi.org/10.1016/0925-4005(96)80008-6
  13. Michel Meunier, Ricardo Izquierdo, Lahcen Hasnaoui, Eric Quenneville, Dentcho Ivanov, Francois Girard, Francois Morin, Arthur Yelon and Michael Paleologou, Applied Surface Science, 127, 466 (1998) https://doi.org/10.1016/S0169-4332(97)00674-0
  14. T. Takahashi, high Conductivity Solid ionic Conductors recent Trends and Applications 513 (1987)
  15. David R. Gaskell, Introduction to Metallurgical Thermodynamics second edition, pp.237 (1981)