Antiangiogenic and Antitumor Activities of the Cryptic Fragments with Kringle Architecture

  • Joe, Young-Ae (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea) ;
  • Kim, Myung-Rae (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea) ;
  • Shim, Byoung-Shik (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea) ;
  • Oh, Dae-Shik (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea) ;
  • Hong, Sung-Hee (Laboratory of Experimental Therapeutics, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Yong-Kil (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea)
  • Published : 2003.12.01

Abstract

Various angiogenesis inhibitors target vascular endothelial cells and block tumor angiogenesis. Angiostatin is a specific endogenous angiogenesis inhibitor in clinical trials, which contains only the first four triple loop structures, known as kringle domains. Its generated by proteolytic cleavage of its parent molecule plasminogen, which itself does not exhibit antiangiogenic activity. Kringle domains from prothrombin, apolipoprotein, hepatocyte growth factor, urokinase and tissue-type plasminogen activator also elicit anti-angiogenic or antitumor activities in several model systems, albeit low amino acid sequence identity between angiostatin and each individual kringle. However, the differential effects of each kringle domain on endothelial cell proliferation, and migration observed in these kringle domains, suggest that the amino acid sequence of the primary structure is still important although kringle architecture is essential for anti-mlgiogenic activity. If it is further studied as to how amino acid sequence and kringle architecture contributes in anti-angiogenic activity, with studies on underlying mechanisms of anti-angiogenesis by kringle-based angiogenesis inhibitors, it will provide basis for the development of new potent anti-angiogenesis inhibitors and improvement of the efficacy of angiogenesis inhibitors.

Keywords

References

  1. Asahai-a, T., Masuda, H., Takahshi, T., Kalka, C., Paslore, C., Silver, M., Kearne, M., Magner, M., and Isner, J. M. (1999). Bone marrow origin of endothelial progenitor cells responsi-ble for postnatal vasculogenesis in physiological and Path0109-ical neovasculahzation. Circ. Res. 6; 85, 221-228
  2. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., and Hana-han, D. (1999). Effects of angiogenesis inhibilors on multi-slage carcmogenesis in mice. Science 284, 808-812 https://doi.org/10.1126/science.284.5415.808
  3. Cao, R., Wu, H. L., Veitonmaki, N., Linden, R, Famebo, J., Shi, G. Y, and Cao, Y. (1999). Suppression of angiogenesis and tumor growth by the inhibilor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. U.S.A. 96, 5728-5733 https://doi.org/10.1073/pnas.96.10.5728
  4. Cao, Y. (2001). Endogenous angiogenesis inhibitors and their thera-peutic implicadons. Int. J. Biochem. Cell Biol. 33, 357-369 https://doi.org/10.1016/S1357-2725(01)00023-1
  5. Cao, Y., Chen, A., An, S. S., Ji, R. W., Davidson, D., and Llinas,M. (1997). Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272, 22924-22928 https://doi.org/10.1074/jbc.272.36.22924
  6. Cao, Y, Cao, R., and Veitonmaki, N. (2002). Kringle stmctnres and andangiogenesis. Curr. Med. Chem. Anti-Canc Agents 2, 667-681 https://doi.org/10.2174/1568011023353705
  7. Cao, Y, Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., O'Reilly, M. S., Llinas, M., and Folkman, J. (1996). Kringle domains of human angiostatin. Characteriza-tion of Ihe anti-proliferative activity on endothelial cells. J. Biot. Chem. 271, 29461-29467 https://doi.org/10.1074/jbc.271.46.29461
  8. Carmeliet, R, Dor, Y., Herbert, J. M., Fukumura, D., Brussel-mans, K., Dewerchin, M., Neeman, M., Bono, R, Abramov-itch, R., Maxwell, R, Koch, C. J., Ratcliffe, R, Moons, L., Jain, R. K., Collen, D., Keshert, E., and Keshet, E. (1998). Role of HIF-lalpha in hypoxia-mediated apoplosis. ce11 proliferation and tumour angiogenesis. Nature 394, 485-490 https://doi.org/10.1038/28867
  9. Castellino, F. J., and Beals, J. M. (1987). The genetic relationships between the kringle domains of human plasmmogen, prothrombin, lissue plasminogen activator, urokinase, and coagulation factor XII. J. Mol. Evol. 26, 358-369 https://doi.org/10.1007/BF02101155
  10. Castellino, F. J., Ploplis, V. A., Powell, J. R., and Sthckland, D. K. (1981). The existencc of independent domain structures inhuman Lys77-p1asminogen. J. Biol. Chem. 256, 4778-4782
  11. Claesson-Welsh, L., Welsh, M., Ito, N., Anand-Apte, B., Soker, S., Zetter, B., O'Reilly, M., and Folkman, J. (1998). Angiostatin induces endothelial cell apoptosis and activation of focal adhe-sion kinase independently of the integrin-binding motif RGD. Proc. Nall. Acd. Sci. U.S.A. 95, 5579-5583 https://doi.org/10.1073/pnas.95.10.5579
  12. Dameron, K. M., Volpert, 0. V., Tainsky, M. A., and Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regula-tion of thrombospondin-l. Science 265, 1582-1584 https://doi.org/10.1126/science.7521539
  13. Daie, K., Matsumnoto, K., Shimmra, H., Tanaka, M., and Nakainum, T. (1997). HGF/NK4 is a speciRc antagonist for pleioti-optnc actions ofhepatocyte growth factor. FEBS Lett. 420, 1-6 https://doi.org/10.1016/S0014-5793(97)01475-0
  14. Davies, G., Mason, M. D., Martin, T. A., Parr, C., Watkms, G., Lane, J., Matsumoto, K., Nakamura, T., and Jiang, W. G. (2003). TheHGF/SF antagonist NK4 reverses fibroblast- and HGF-induced prostate tumor growth and anUiogenesis m vivo. Int. J. Cancer 106, 348-354 https://doi.org/10.1002/ijc.11220
  15. Dong, Z., Kumar, R., Yang, X., and Fidler, I. J. (1997). Macroph-age-derived metalloelastase is responsible for the generation ofangiostatin in Lewis lung carcinoma. CeII 88, 801-810
  16. Folkman, J. (1995a). Angiugenesis in cancer, vascular, rheuma-toid and other disease. Nat. Med. 1, 27-31 https://doi.org/10.1038/nm0195-27
  17. Folkman, J. (1995b). Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl J. Med. 333, 1757-1763 https://doi.org/10.1056/NEJM199512283332608
  18. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y, Park. E. C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K., and Seed, B. (1998). Tumor induction of VEGF promoter activity in stro-mal cells. Cell 94, 715-725 https://doi.org/10.1016/S0092-8674(00)81731-6
  19. Gately, S., Twardowski, p., Stack M. S., Cundiff, D. L., GreUa, D., Cas-tellino, F. J., Enghild, J., Kwaan, H. C.. Lee, F, Kramer, R. A., Volp-ert, 0., Bouck, N., and Soff, G. A. (1997). The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. Nall. Acad. Sci. U.S.A. 94,10868-10872 https://doi.org/10.1073/pnas.94.20.10868
  20. Griscelli, R, Li, H., Bennaceur-Gnscelli, A., Soria, J., Opolon, R,Soria, C, Perricaudet, M., Yeh, P,, and Lu, H, (1998). Angioslatm gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc. Natl. Acad. Sci. U.S.A. 95, 6367-6372 https://doi.org/10.1073/pnas.95.11.6367
  21. Holmgren, L,, O'Reilly, M. S., and Folkman, J. (1995). Dormancy of micrometastases: balanced proliferadon and apoptosis in the pres-ence of angiogenesis suppression. Nat. Med. 1, 149-153 https://doi.org/10.1038/nm0295-149
  22. Ji, W. R., Bamentos, L. G., Llinas, M., Gray, H., Villarreal, X., DeFord, M. E., Castellino, F. J., Kramer, R. A., and Trail, P. A. (1998a). Selective inhibition by kiingle 5 of human plasmino-gen on endothelial cell migration, an important process mangiogenesis. Biochem. Biophys. Res. Commun 247, 414-419 https://doi.org/10.1006/bbrc.1998.8825
  23. Ji, W. R., Castellino, F. J., Chang, Y., Deford, M. E., Gray, H., Villarreal, X., Kondri, M. E., Marti, D. N., Llinas, M., Schaller, J., Kramer, R. A., and Trail, P. A. (1998b). Characterization of kringle domains of angiostatin as antagonists of endoihelial cell migration, an important process in angiogenesis. FASEB J. 12 1731-1738
  24. Joe, Y. A., Hong, Y. K., Chung, D. S., Yang, Y. J., Kang, J. K., Lee, Y. S., Chang, S. I., You, W. K., Lee, H., and Chung, S. I. (1999). Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int. J. Can-cer 82, 694-699 https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<694::AID-IJC12>3.0.CO;2-C
  25. Kerbel, R., and Folkman, J. (2002). Clinical transladon of angio-genesis inhibitors. Nat. Rev. Cancer 2, 727-739 https://doi.org/10.1038/nrc905
  26. Kim, H. K., Hong, Y. K., Park, H. E, Hong, S. E., and Joe, Y. A. (2003a). Secretory production of recombinant urokmase kringle domam in Pichia pastoiis. J. Microbiol. Bwtechmt. 13, 591-597
  27. Kim, H. K., Lee, S. Y., Oh, H. K., Kang, B. H., Ku, H. J., Lee, Y, Shin, J. Y., Hong, Y. K., and Joe, Y. A. (2003b). Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem. Biophys. Res. Commun 304, 740-746 https://doi.org/10.1016/S0006-291X(03)00656-9
  28. Kim, J. S., Chang, J. H., Yu, H. K., Ahn, J. H., Yum, J. S., Lee, S. K., Jung, K. H., Park, D. H., Yoon, Y, Byun, S. M., and Chung, S. I. (2003c). Inhibition of Angiogenesis and Angiogenesis-depen-dent Tumor Growth by the Cryptic Kringle Fragments of Human Apolipoprotein(a). J. Biol. Chem. 278, 29000-29008 https://doi.org/10.1074/jbc.M301042200
  29. Kim, K. S., Hong, Y. K., Joe, Y. A., Lee, Y., Shin, J. Y., Park, H. E., Lee, I. H., Lee, S. Y., Kang, D. K., Chang, S. I., and Chung, S. I. (2003d). Anti-angiogemc acdvity of the recombinant krin-gle domain of urokmase and its specific entry into endothelial cells. J. BioI Chem., 278, 11449-11456 https://doi.org/10.1074/jbc.M212358200
  30. Kuba, K., Matsumoto, K., Date, K., Shimnura, H., Tanaka, M., and Nakamura, T. (2000). HGF/NK4, a Four-Kringle Antagonist of Hepatocyte Growth Factor, Is an Angiogenesis Inhibitor that Suppresses Tumor Growth and Metastasis in Mice. Cancer Res. 60, 6737-6743
  31. Lee, H., Kim, H. K., Lee, J. H., You, W. K., Chung, S. I., Chang, S. I., Park, M. H., Hong, Y. K., and Joe, Y. A. (2000). Dismp tion of interkringle disulfide bond of plasrmnogen kringle 1 -3 changcs the lysinc binding capability of kringle 2. but not its antiangiogenic activity. Arch. Biochem. Biophys. 375, 359-363 https://doi.org/10.1006/abbi.1999.1675
  32. Lee, T. H., Rhim, T., and Kim, S. S. (1998). Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibro-blast growth factor-stimulated capillary endothelial cells. J. Biot. Chem. 273, 28805-28812 https://doi.org/10.1074/jbc.273.44.28805
  33. Lu, H., Dhanabal, M., Volk, R., Waterman, M. J., Ramchandran, R., Knebelmann, B., Segal, M., and Sukhatme, V. P. (1999). Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem. Biophys. Res. Commun 258, 668-673 https://doi.org/10.1006/bbrc.1999.0612
  34. Lucas, R., Holmgren, L., Garcia, I., Jimenez, B., Mandhota, S. J., Bor-lat, F., Sim, B. K., Wu, Z., Gmu, G..E., Shing, Y, Soff. G. A., Bouck, N., and Pepper, M. S. (1998). Multiple forms of angiostatin induce apoptosis in endothelial cells. BIood 92, 4730-4741
  35. MacDonald, N. J., Murad, A. C., Fogler, W. E., Lu, Y, and Sim, B. K. (1999). The turnor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem. Biophys. Res. Commun 264, 469-477 https://doi.org/10.1006/bbrc.1999.1486
  36. Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman. M. D., Misra, U. K., Cheek, D. J. P., and Salvatore, V. (2001). Endothelial cell surface Fl-FO ATP synthase is active in ATP synthesis and is inhibited by angiostaLin. PNAS 98, 6656-6661 https://doi.org/10.1073/pnas.131067798
  37. Novokhatny, V. V, Kudinov, S. A., and Privalov, P. L. (1984). Domains in human plasminogen. J. Mol. Biol. 179, 215-232 https://doi.org/10.1016/0022-2836(84)90466-2
  38. O'Reilly, M. S., Boehm, T., Shing, Y, Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. CeIl 88, 277-285 https://doi.org/10.1016/S0092-8674(00)81848-6
  39. O'Reilly, M. S., Holmgren, L., Chen, C., and Folkman, J. (1996.). Angiostatin induces aiid sustains dormancy of human primary tumors in mice. Nat. Med. 2, 689-692 https://doi.org/10.1038/nm0696-689
  40. O'Reilly, M. S., Holmgren, L., Shing, Y, Chen, C., Rosenthal. R. A., Moses, M., Lane, W. S., Cao, Y, Sage, E. H., and FoLkman, J. (1994). Angiostatin: a novel angiogenesis inhibitor that medi-ates the suppression of metastases by a Lewis lung carcinorna Cell 79, 315-328 https://doi.org/10.1016/0092-8674(94)90200-3
  41. Perez-Atayde, A. R., Sallan, S. E., Tedrow, U., Connors, S., AU-red, E., and Folkman, J. (1997). Spectrum of tumor angiogen-esis in the bone marrow of children with acute lymphoblasiic leukemia. Am. J. Pathol. 150, 815-821
  42. Relf, M., LeJeune, S,, Scott, P. A., Fox, S., Smith, K., Leek, R., Moghaddam, A., Whitehouse, R., Bicknell, R., and Hanis, A. L. (1997). Expression of the angiogenic factors vascular endot-helial cell growth factor, acidic and basic fibroblast growth fac-Lor, turnor growth faclor beta-l, Platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963-969
  43. Rhim, T. Y, Park, C. S., Kim, E,, and Kim, S. S. (1998). Human prothrombin fragment 1 and 2 inhibit bFGF-induced BCE cell growth. Biochem. Biophys. Res. Commun 252, 513-516 https://doi.org/10.1006/bbrc.1998.9682
  44. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., Fujita, Y, Kothari, S., Mohle, R., Sauvage, L. R., Moore. M. A. Storb, R. E, and Hammond, W. P. (1998). Evidence for circulat-ing bone marrow-derived endothelial cells. Blood 92, 362-367
  45. Tarui, T., Miles, L. A., and Takada, Y. (2001). Specific interaction of angiostatin with integrin a1pha(v)beta(3) in endolhelial cells. J. Biol Chem. 276, 39562-39568 https://doi.org/10.1074/jbc.M101815200
  46. Trexler, M., and Patthy, L. (1983). Folding autonomy of the krin-gle 4 fragment of human plasminogen. Proc. Natl Acad. Sci. U.S.A. 80, 2457-2461 https://doi.org/10.1073/pnas.80.9.2457
  47. Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, 0., and Holrngren, L. (2001). Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell Biol. 152, 1247-1254 https://doi.org/10.1083/jcb.152.6.1247
  48. Wajih, N., and Sane, D. C. (2002). Angiostatin selectivdy inhibits sig-naling by hepatocyte growth factor in endothelial and smooth musde cells. Blood, 2002-2002-0582
  49. Xin, L., Xu, R., Zhang, Q., Li, T. P., and Gan, R. B. (2000). Ki-ingle 1 of human hepatocyte growth factor inhibits bovine aortic endolhelial cell proliferation stimulated by basic Fibroblast growlh factor and causes cell apoptosis. Biochem. Biophys. Res. Commun 277, 186-190 https://doi.org/10.1006/bbrc.2000.3658