Behavior of Hepatocytes Inoculated in Gelatin-Immobilized Polyurethane Foam

  • Yang, Kyung-Su (Department of Polymer Science, Kyungpook National University) ;
  • Xinglin Guo (Department of Polymer Science, Kyungpook National University) ;
  • Wan Meng (Department of Polymer Science, Kyungpook National University) ;
  • Hyun, Jae-Yong (Department of Polymer Science, Kyungpook National University) ;
  • Kang, Inn-Kyu (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Yang-Il (School of Medicine, Kyungpook National University)
  • Published : 2003.12.01

Abstract

We have fabricated gelatin-immobilized polyurethane foams (PUFG) by dipping polyurethane foam (PUF) in an aqueous solution containing gelatin and by subsequent reaction with glutaraldehyde after freeze-drying. Gelatin aqueous solutions of different concentrations were used as the dipping solutions to control the amount of immobilized gelatin. The average pore size of PUF decreased with an increase in gelatin concentration. It was found from the hepatocyte adhesion experiment that the amount of hepatocytes seeded on PUFG1, prepared by using a 1% aqueous gelatin solution, was higher than that on other PUFGs. The hepatocytes inoculated in PUFG1, were slightly aggregated as the incubation time increased. The cells inoculated in PUFG1 showed higher ammonia removal ability than those monolayer-cultured on a gelatin-immobilized polystyrene dish (PSG) after 1 and 4 days of incubation time. The inoculated cells exhibited higher albumin secretion relative to monolayer-cultured hepatocytes on PSG. Albumin secretion by hepatocytes seeded on PUFG1 was increased by the presence of serum and was further increased by both the presence of serum and cytokines. The results obtained from a 3-(3,4-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that PUFG can provide a better microenvironment for hepatocyte culture along with nutrition and metabolite transfer through the high porosity of PUF.

Keywords

References

  1. Int. J. Artif. Organs v.25 K.Nakazawa;H.Ijima;J.Fukuda;R.Sakiyama;Y.Yamashita;M.Shimada;K.Shirabe;E.Tsujita;K.Sugimachi;K.Funatsu
  2. Int. J. Artif. Organs v.24 J.Fukuda;R.Sakiyama;K.Nakazawa;H.Ijima;Y.Yamashita;M.Shimada;K.Shirabe;E.Tsujita;K.Sugimachi;K.Funatsu
  3. Artif. Organs v.25 K.Funatsu;H.Ijima;K.Nakazawa;Y.Yamashita;M.Shimada;K.Sugimachi https://doi.org/10.1046/j.1525-1594.2001.025003194.x
  4. Int. J. Artif. Organs v.24 Y.Yamashita;M.Shimada;E.Tsujita;T.Rikimaru;H.Ijima;K.Nakazawa;R.Sakiyama;J.Fukuda;K.Funatsu
  5. Cell Transp. v.10 Y.Yamashita;M.Shimada;E.Tsujita;S.Tanaka;H.Ijima;K.Nakazawa;R.Sakiyama;J.Fukuda;T.Ueda;K.Funatsu
  6. Biotech. Bioeng. v.70 H.Kurosawa;K.Yasumoto;T.Kimura;Y.Amano https://doi.org/10.1002/1097-0290(20001020)70:2<160::AID-BIT5>3.0.CO;2-C
  7. Int. J. Artif. Organs v.23 H.Ijima;K.Nakazawa;S.Koyama;M.Kaneko;T.Matsushita;T.Gion;K.Shirabe;M.Shimada;K.Takenaka;K.Sugimachi;K.Funatsu
  8. Int. J. Artif. Organs v.23 H.Ijima;K.Nakazawa;S.Koyama;M.Kaneko;T.Matsushita;T.Gion;K.Shirabe;M.Shimada;K.Takenaka;K.Sugimachi;K.Funatsu
  9. J. Biomater. Sci., Polymer Edn. v.11 Y.Fujii;K.Nakazawa;K.Funatsu https://doi.org/10.1163/156856200743986
  10. J. Biomater. Sci., Polymer Edn. v.9 H.Ijima;K.Nakazawa;H.Mizumoto;T.Matsushita;K.Funatsu https://doi.org/10.1163/156856298X00136
  11. Appl. Microbio. Biotech. v.36 T.Matsushita;H.Ijima;N.Koide;K.Funatsu
  12. Tissue Engineering for Therapeutic Use 3 Y.Ikada;T.Okano
  13. Mater. Sci. Eng. v.C6 M.Kaneko;J.Fukuda;H.Ijima;K.Nakazawa;T.Gion;M.Shimada;K.Shirabe;K.Takenaka;K.Sugimachi;K.Funatsu
  14. Tissue. Eng. v.4 H.Ijima;T.Matsushita;K.Nakazawa;Y.Fujii;K.Funatsu https://doi.org/10.1089/ten.1998.4.213
  15. J. Surg. Res. v.82 T.Gion;M.Shimada;M.Shimada;K.Shirabe;K.Nakazawa;H.Ijima;T.Matsushita;K.Funatsu;K.Sugimachi https://doi.org/10.1006/jsre.1998.5540
  16. Hepatology v.19 Y.Sato;T.Ochiya;Y.Yasuda;K.Matsubara https://doi.org/10.1002/hep.1840190430
  17. Biomaterials v.20 J.A.Rowley;G.Madlabayan;D.J.Mooney https://doi.org/10.1016/S0142-9612(98)00107-0
  18. Biomaterials v.17 S.T.Lopina;G.Wu;E.W.Merrill;L.G.Cima https://doi.org/10.1016/0142-9612(96)88706-0
  19. J. Polym. Sci. Polym. Chem. v.31 T.Matsuda;M.J.Moghaddam https://doi.org/10.1002/pola.1993.080310629
  20. Neoglycoconjugates: Preparation and Application Y.C.Lee;R.T.Lee
  21. Cryobiology v.40 B.J.Nathan;P.J.Evans https://doi.org/10.1006/cryo.1999.2229
  22. Cell. Biol. Intern. v.19 P.J.Evans https://doi.org/10.1006/cbir.1995.1021
  23. Biomaterials v.23 S.Zmora;R.Glicklis;S.Cohen https://doi.org/10.1016/S0142-9612(02)00146-1
  24. Biomaterials v.23 J.Yang;M.Goto;H.Ise;C.S.Cho;T.Akaike https://doi.org/10.1016/S0142-9612(01)00129-6
  25. Tissue Engineering for Therapeutic Use 3 Y.Ikada;T.Okano
  26. Artif. Organs v.21 N.Ohshima;K.Yanagi;H.Miyoshi https://doi.org/10.1111/j.1525-1594.1997.tb00470.x
  27. Trans. Am. Soc. Artif. Intern. Organs v.36 K.Yanagi;S.Mizuno;N.Ohshima
  28. Appl. Microbiol. Biotech. v.37 K.Yanagi;H.Miyoshi;H.Fukuda;N.Ohshima https://doi.org/10.1007/BF00210985
  29. Macromol. Res. v.10 S.J.Lee;Y.M.Lee;G.Khang;I.Y.Kim;B.Lee;H.B.Lee https://doi.org/10.1007/BF03218265
  30. Korea Polym. J. v.9 G.Khang;C.S.Park;J.M.Lee;S.J.Lee;Y.M.Lee;M.K.Choi;I.Lee;H.B.Lee
  31. Methods Cell Biol. v.13 P.O.Seglen
  32. Biomaterials v.17 A.T.Gutsche;H.L.Zurlo;J.J.Yager;K.W.Leong https://doi.org/10.1016/0142-9612(96)85577-3
  33. Biotechnol. Lett. v.23 J.Yang;T.W.Chung;M.Nagaoka;M.Goto;C.S.Cho;T.Akaike https://doi.org/10.1023/A:1011600414225