CRT와 중첩다중비트 주사기법을 접목한 승산기

Multiplier Using CRT and Overlapped Multiple-bit Scanning Method

  • 김우완 (경남대학교 정보통신공학부) ;
  • 장상동 (경남대학교 컴퓨터공학과)
  • 발행 : 2003.12.01

초록

최근 레지듀 수체계를 기반으로 하는 컴퓨터 영상처리, 음성출력 등의 디지털 신호처리 하드웨어에 관한 연구가 고속저가의 하드웨어 구현에 크게 기여하고 있다. 본 논문에서는 모듈라이$(2^k-1, 2^k, 2^k+1)$를 사용하여 RNS에서 WNS로 WNS에서 RNS로 변환하는 방법을 통해 승산기를 설계 및 구현한다. 이는 CRT 변환을 중첩다중비트 주사기법을 접목한 시뮬레이션을 통해, 기존의 방법보다 속도가 빠르다는 것을 알 수 있고, 이는 RNS의 병렬처리와 캐리부재의 연산특성 때문임을 알 수 있다.

Digital signal processing hardware based in RNS is currently considered as an important method for high speed and low cost hardware realization. This research designs and implements the method for conversion from a specific residue number system with moduli of the from $(2^k-1, 2^k, 2^k+1)$ to a weighted number system. Then, it simulates the implementation using a overlapped multiple-bit scanning method in the process of CRT conversion. In conclusion, the simulation shows that the CRT method which is adopted in this research, performs arithmetic operations faster than the traditional approaches, due to advantages of parallel processing and carry-free arithmetic operation.

키워드

참고문헌

  1. K. Elleithy and M. Bayoumi, 'A Systolic Architecture for modulo Multiplication,' IEEE Trans Circuit and System- II: Analog and Digital Signal Processing, vol. 42, pp. 7'2!5-729, Nov. 1995 https://doi.org/10.1109/82.475251
  2. W. K. Jenkins, 'Techniques for residue to analog conversion for residue encoded digital filters,' IEEE Trans, Circuits Syst., vol. CAS-25, pp 553-562, July 1978
  3. A. A Sawchuk and T. C Strand, 'Digital optical computing,' Proc IEEE, Vol. 72, pp. 758-779, July 1982
  4. Ahmad A. Hiasat, 'New Efficient Structure for a Modular Multiplier for RNS,' IEEE Trans Computers, vol. 49, pp. 170-174, Feb. 2000 https://doi.org/10.1109/12.833113
  5. J. Bajard, L. Didier, and P. Kornerup, 'An RNS Montgomery Modular Multiplication Algorithm,' IEEE Trans Computers, vol. 47, pp. 766-776, July. 1998 https://doi.org/10.1109/12.709376
  6. A. Wrzyszcz, D. Milford, and E. Dagless, 'A New Approach to fixed-Coefficient Inner Product Computation over Finite Rings,' IEEE Trans Computers, vol. 45, pp. no. 12, pp. 1,345-1,355, Dec. 1996 https://doi.org/10.1109/12.545965
  7. H. M. Razavi, and J. Battelini., 'Design of a residue arithmetic multiplier,' lEE Proceedings-G, vol. 139, No.5, pp. 581-585, October 1992 https://doi.org/10.1049/ip-g-2.1992.0089
  8. Khalid M. Ibrahim., and Salam N.Saloum, 'An efficient residue to binary converter design,' IEEE Trans on Circuit and System, vol., 35, No.9, pp. 1156-1158, September, 1988 https://doi.org/10.1109/31.7576
  9. A. Hiasat 'New designs for a sign detector and a residue to binary converter,' lEE Proceedings-G, vol. 140, No.4, pp. 247-252, August 1993 https://doi.org/10.1049/ip-g-2.1993.0042
  10. F. Pourbigharaz, Memver, IEEE and RM Yassine, 'A Signed-Digit Architecture for Residue to Binary Transformation,' Algorithmica, pp. 79-119, 3, 1988 https://doi.org/10.1007/BF01762111
  11. Braun, E. L., Digital Computer Design, Academic Press, New York, 1963
  12. Khaled M. Elleithy, Member, IEEE, and Magdy A. Bayourni, Senior Member, IEEE, 'Fast and Flexible Architectures for RNS Arithmetic Decoding,' IEEE Transaction on Circuits and Systems, vol. 39, No.4, pp. 226-235, April 1992 https://doi.org/10.1109/82.136572
  13. Kai Hwang, 'Computer Arithmetic Principles, Architecture, and Design,' School of Electrical Engineering Purdue University, 1979
  14. Computer Arithmetic Principles, Architecture, and Design Kai Hwang