DOI QR코드

DOI QR Code

Effects of Combined Micronutrient(Fe, Mn, Cu, Zn, Mo and B) Application on Forage Traits in Pure and Mixed Swards of Orchardgrass and White Clover I. Changes in the growth, summer depression, and flowering of forage plants

Orchardgrass 및 White Clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 여러 특성에 미치는 영향 I. 목초의 생육, 하고 및 개화 등의 특성 변화

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2003.12.01

Abstract

This pot experiment was conducted in order to observe the effects of application of combined micronutrients(T$_1$: control. T$_2$; Fe, T$_3$; Fe+Mn, T$_4$; Fe+Mn+Cu, T$_{5}$; Fe+Mn+Cu+Zn, T$_{6}$;Fe+Mn+Cu+Zn+Mo, T$_{7}$; Fe+Mn+Cu+Zn+Mo+B) on forage performance of pure and mixed cultures of orchardgrass and white clover. The first part was concerned with the changes in the growth, summer depression, and flowering of forage plants. The results obtained are summarized as follows: 1. The T$_3$and T$_{6}$ resulted in a wide chlorosis induced by the Fe-deficiency on orchardgrass. Chlorosis was significantly reduced by the T$_4$and T$_{5}$, whereas the T$_{7}$, T$_2$, and T$_1$showed normal growth without chlorosis symptoms. The T$_{7}$ resulted in the best growth of orchardgrass both in the pure and mixed swards. There was no chlorosis symptom on white clover. whereas the T$_1$, T$_2$and T$_{7}$ showed a relatively good growth with deep green leaf-colour compared with the other treatments in the pure culture. 2. In summer, a summer depression occurred in orchardgrass: this was significantly reduced by the T$_1$and T$_{7}$. The treatments with chlorosis symptoms in orchardgrass partly induced a lodging. Summer depression in white clover did not occur. 3. In the pure culture, the T$_{7}$ and T$_2$in white clover resulted in many flowers and flower-buds compared with the other treatments. The T$_{7}$, especially, showed a long blooming period and an early full bloom compared with the other treatments, whereas the T$_{6}$ and is showed inferior numbers of them. Only the T$_{7}$ resulted in more flowers than flower-buds, and above 1 in the flower/flower-bud ratio except the T$_{6}$ in the mixed culture. 4. It was recognized that the chlorosis of Fe-deficiency occurred not only from the unsuitable ratios of Fe/Mn and Fe/Mo but also from the unsuitable mutual ratios among the cations(Fe, Mn, Cu and Mn), between the anions(Mo and B), and their total ion concentration. It was observed the multiple interactions of Fe${\times}$Mn${\times}$Mo${\times}$B, and the distinct role of B as a regulator.

orchardgrass 및 white clover의 단파 및 혼파 재배조건에서 미량요소 Fe, Mn, Cu, Zn, Mo 및 B의 조합시비별 목초의 생육, 개화, 수량, 양분 함량 및 초종간 경합지수 등에 미치는 영향 등을 구명하였다. 다량요소 양분을 동일량 시비한 조건에서 7 수준의 미량요소 조합시비는 T$_1$; 대조구, T$_2$; Fe, T$_3$; Fe+Mn, T$_4$; Fe+Mn+Cu, T$_{5}$; Fe+Mn+Cu+Zn, T$_{6}$;Fe+Mn+Cu+Zn+Mo 및 T$_{7}$; Fe+Mn+Cu+Zn+Mo+B로 하였다. 본 I집에서는 각 조합시비별 목초의 생육, 개화 및 수분생리/하고현상 특성 등에 미치는 영향을 검토하였다. 1, orchardgrass는 T$_3$와 T$_{6}$ 에서 심한 Fe-결핍 황화현상을 보였고, 이는 T$_4$와 T$_{5}$ 에서는 크게 경감되었다. 반면에 T$_1$, T$_2$및 T$_{7}$ 조합시비에서는 황화현상이 없이 정상적인 생육을 보였고, 특히 T$_{7}$완전 조합시비에서는 단파 및 혼파재배 공히 다른 조합시비에 비해서 가장 양호한 생육을 보였다. white clover는 조합시비별 황화현상은 보이지 않았으나 단파재배에서 T$_1$, T$_2$및 T$_{7}$에서는 다른 조합시비에 비해서 더 진한 녹색과 더 양호한 생육을 보였다. 2. 여름 고온기에 orchardgrass는 하고현강을 보였으나 T$_1$과 T$_{7}$에서는 다른 처리구보다 상대적으로 크게 경감 되였다. 황화현상을 보인 조합시비에서는 약한 줄기와 고온으로 인하여 일부 도복현상을 보였다. white clover는 하고현상을 보이지 않았고 처리별 수부요구도의 차이는 분명하지 않았다. 3. 단파재배에서 white clover의 개화 및 화아 수는 T$_{7}$ 및 T$_2$에서 가장 많았고 T$_{7}$에서는 다른 조합시비에 비해서 더 긴 개화기간과 더빠른 만개를 보였다. 이에 비해서 T$_{5}$ 및 T$_{6}$에서는 대조구인 T$_1$보다 적었고 처리 중 가장 적은 개화수를 보였다. T$_{7}$에서 만이 단파 및 혼파재배 공히 개화 수가 화하 수보다 많은 개화 수/화아 수의 비율이 >1 이였다(혼파의 T$_{6}$ 예외). 4. Fe-결핍 황화현상은 항시 부적합한 Fe/Mn과 Fe/Mo 비율에 기인되지 않고, 양이온간(Fe, Mn, Cu, Zn), 음이온간(Mo, B), 그리고 이들의 총 농도의 부조화에도 기인된다는 것을 인지할 수 있었다. 그리고 Fe${\times}$Mn${\times}$Mo${\times}$B 간 다량 교호작용이 있으며 이 때 B의 조정자 역할이 큰 것으로 보였다.

Keywords

References

  1. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose and Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  2. Brown, J.C., R.S. Holmes and L.O. Tiffm. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23;231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  3. Cumbus I.P., D.J. Homsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48;651-660 https://doi.org/10.1007/BF00145775
  4. Finck, A. 1969. Pflanzenemaehrung in Stickworten, 1. Aufl. Verlag Ferdinand Hirt, Kiel
  5. Fischbeck, G., K.U. Heyland and N. Knauer. 1975. Spezieller Pflanzenbau. Verlag Eugen Ulmer, Stuttgait. 225
  6. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44;559-566 https://doi.org/10.1007/BF00011375
  7. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55;47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  8. Jung, G.A. and B.S. Baker. 1973. Forage grasses and legumes-orchardgrass. In; Heath and Bames:Forages, 3rd edit. The Iowa State Univ. Press, USA. 285-296
  9. Kannan, S. and S. Ramani. 1978. Studies on Molybdenum absorption and transport in bean and rice. Plant Physiol. 62; 179-181 https://doi.org/10.1104/pp.62.2.179
  10. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12;259-275 https://doi.org/10.1007/BF01343653
  11. Klapp, E. 1971. Wiesen und Weiden. Verlag Paul Parley, Belin und Hamburg. 155. 191
  12. MacKay, D.C., E.W. Chipman and W.M. Langille. 1964. Crop responses to some micronutrients and sodium on sphagnum peat soil. Soil Sci. Soc. Am. Proc. 28;101-104 https://doi.org/10.2136/sssaj1964.03615995002800010043x
  13. Massumi, A. and A. Finck. 1973. Molybdaengehalte einiger Acker and Gruenlandpflanzen Schleswig-Holsteins in Abhaengigkeit von Bodenreaktion. Z. F. Pflanzenemaehr., Bodenkd. 134;56-65 https://doi.org/10.1002/jpln.19731340108
  14. Matin, A. 1966. Minderung der MolybdaenToxiditaet an Pflanzen durch andere Naehrstoffe. Dissertation, D 83, Nr. 200, Techn. Univ. Berlin
  15. Moore, D.P., M.E. Harward, D.D. Mason, R.J. Hader, W.L. Lott and W.A. Jackson. 1957. An investigation of some of the relationships between copper, iron, and molybdenum in the growth and accumulations of copper and iron. Soil Sci. Soc. Am. Proc. 21;65-74 https://doi.org/10.2136/sssaj1957.03615995002100010014x
  16. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42;455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  17. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19;191-195
  18. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31;451-462 https://doi.org/10.1007/BF01373816
  19. Riekels, J.W. and J.C. Lingle 1966. Iron uptake and translocation by tomato plants as influenced by root temperature and manganese nutrition. Plant Physiol. 41;1095-110 https://doi.org/10.1104/pp.41.7.1095
  20. Shingh, B.R. and K. Steenberg. 1975. Plant response to micronutrients. III. Interaction between manganese and zinc in maize and barley plants. Plant and Soil. 40;655-667 https://doi.org/10.1007/BF00010521
  21. Sommers, l.I. and J.W. Shive. 1942. The iron manganese relation in the plant metabolism. Plant Physiol. 17;582-602 https://doi.org/10.1104/pp.17.4.582