DOI QR코드

DOI QR Code

Effects of Bromate on the Glutathione Synthesis in Various Organs of Rats

Bromate가 흰쥐의 장기 Glutathione 함량에 미치는 영향

  • 김나영 (경성대학교 환경문제연구소) ;
  • 강혜옥 (경성대학교 환경문제연구소) ;
  • 이무강 (경성대학교 환경문제연구소) ;
  • 최종원 (경성대학교 환경문제연구소)
  • Published : 2003.10.01

Abstract

The effects of bromate administration on glutathione were studied in rats. The contents of glutathione in the liver and kidney were significantly decreased but the alteration was not significant in lung and blood by bromate adminstration. The decrease occurred without concomitant increases in oxidized glutathione (GSSG) or in the GSSG/GSH+GSSG ratio. The activities of $\gamma-glutamyl$ cysteine synthetase in the liver and kidney were decreased by bromate administration. $\gamma-Glutamyl$ transpeptidase activities was significantly decreased in the kidney and not significantly decreased in the lung of bromate treated-rats. These results suggest that the decreased synthesis of glutathione by bromate may be an important reason for the decreased level of glutathione in the liver and kidney, thus the decreased glutathione transport would be a factor on the changes of glutathione contents in bromate-treated rats.

백서에 bromate의 장기간 섭취로 간 및 신장의 glutathion량이 감소되는데, 간과 신장은 유사한 감소양상을 나타냈고, 폐 및 혈액에서는 감소하는 경향은 있었으나 통계적인 유의성은 없었다. Bromate 섭취로$\gamma-glutamyl$-cysteine synthetase와 $\gamma-glutamyl$ transpeptidase 활성이 감소되었다. 따라서 간과 신장의 glutathione 감소로 $\gamma-glutamyl$cysteine synthetase 활성이 감소됨으로서 glutathione 합성저하에 의해 나타난 결과로 생각되고, 폐에서 $\gamma-glutamyl$cysteine synthetase 및 $\gamma-glutamyl$- transpep-tidase 활성에는 별다른 영향이 없었다. 혈액에서는$\gamma-glutamyl$cysteine synthetase와 $\gamma-glutamyl$ transpeptidase 활성 감소로 glutathione의 혈액내로 유입과 타장기로 유출이 모두 저하되어 glutathione량의 변화가 없는 것으로 생각된다. Bromate에 의한 장기내 glutathione량 감소는 유리기 소거기능이 저하되어 bromate에 의해서 생성된 유리기 제거가 미흡할 것으로 생각되므로 bromate 독성의 한 요인이 될 것으로 추측된다.

Keywords

References

  1. Pathophysiology. v.5 Glutathione biosynthesis Anderson,M.E.
  2. Advances in Free radical Biology Medicine v.2 The antioxidant role of vitamine C Bendich,A.;L.J.Machlin;O.Scandurra;G.W.Burton;D.D.M.Wayner https://doi.org/10.1016/S8755-9668(86)80021-7
  3. J. Biol. Chem. v.296 Thioredoxin-dependent peroxide reductase from yeast Chae,H.Z.;S.J.Chung;S.G.Rhee
  4. J. Appl. Microbiol. v.84 Sensorial and microbial effects of gaseous ozone on fresh scad da Silva,M.V.;P.A.Gibbs;R.M.Kirby https://doi.org/10.1046/j.1365-2672.1998.00413.x
  5. Water chemistry David,J.;L.S.Vernon
  6. Chemico. Biological Inter. v.145 Superoxide dismutase: the balance between prevention and induction of oxidative damage den Hartog;Gertjan,J.M.;G.R.M.M.Haenen;E.Vegt;W.J.F.van der Vijgh;A.F.Wim;A.Bast https://doi.org/10.1016/S0009-2797(02)00160-6
  7. The British J. Radiology. v.54 Radiation survival of glutathione-deficient human fibroblasts in culture Deschavanne,P.J.;E.P.Malaise;L.Revesz https://doi.org/10.1259/0007-1285-54-640-361
  8. International J. Radiation Biology & Related Studies in Physics, Chemistry, and Medicine v.37 Lack of oxygen effect in glutathione-deficient human cells in culture Edgren,M.;A.Larsson;K.Nilsson;L.Revesz;O.C.Scott https://doi.org/10.1080/09553008014550341
  9. Wat. Res. v.18 Improved Ammonia Oxidation by Ozone in the Presence of Bromide Ion During Water Treatment Haag,W.R.;J.Hoine;H.Bader https://doi.org/10.1016/0043-1354(84)90227-6
  10. Methods in Enzymology v.186 Role of free radicals and catalytic metal ions in human disease: an overview Halliwell,B;J.M.Gutteridge https://doi.org/10.1016/0076-6879(90)86093-B
  11. Free Radical Biology & Medicine v.20 Developmental changes of antioxidant enzymes in kidney and liver from rats Klaus,J.;W.Henke https://doi.org/10.1016/0891-5849(95)02090-X
  12. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lowry,O.H.;N.J.Rodebrough;A.L.Farr;R.J.Randall
  13. Japan Society on Water Environment v.19 Bromate ion Formation Inhibition by Coexiting Organic Matters in Ozonation Process Mari,A.A.T.;M.Yasumoto https://doi.org/10.2965/jswe.19.930
  14. Chemico. Biological Inter v.111 γ-Glutamyl transpeptidase, a glutathionase: its expression and function in carcinogenesis Marie,H.H https://doi.org/10.1016/S0009-2797(97)00170-1
  15. Annual Review of Biochem. v.52 Glutathione Meister,A.;M.E.Anderson https://doi.org/10.1146/annurev.bi.52.070183.003431
  16. J. Biol. Chem. v.250 Regulation of γ- glutamlcysteine synthesis by nonallosteric feedback inhibition by glutathione Meister,A.;P.G.Richman
  17. Methods in Enzymology v.77 Gamma-glutamyl transpeptidase Meister,A.;S.S.Tate;O.W.Griffith https://doi.org/10.1016/S0076-6879(81)77032-0
  18. Biochem. Biophys. Acta. v.132 γ-Glutamyl tanspeptidase from kidney Moshe,Y.G.;J.F.Thompson https://doi.org/10.1016/0005-2744(67)90187-8
  19. J. Biol. Chem. v.271 Removal of hydrogen peroxideby thiol-specific antioxidant enxyme (TSA) is involved with its antioxidant properties. TSA posscesses thiol peroxidase activity Netto,L.E.;H.Z.Chae;S.W.Kang;S.G.Ree;E.R.Stadtman https://doi.org/10.1074/jbc.271.26.15315
  20. Bioorg. Med. Chem. v.10 Mapping of the active site of rat kidney γ-glutamyl transpeptidase using activated esters and their amide derivates Roselyne,C.;C.Lherbet;J.W.Kejllor https://doi.org/10.1016/S0968-0896(02)00165-7
  21. Molecular & Cellular Biochem. v.39 gamma-Glutamyl transpeptidase: catalytic, structural and functional aspects Tate,S.S.;A.Meister https://doi.org/10.1007/BF00232585
  22. Methods in Enzymology v.113 gamma-Glutamyl transpeptidase from kidney Tate,S.S.;A.Meister https://doi.org/10.1016/S0076-6879(85)13053-3
  23. Anal. Biochem. v.27 Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione:applications to mammalian blood and other tissues Tietze,F. https://doi.org/10.1016/0003-2697(69)90064-5
  24. Rinsho. Byori. v.22 Use of a mixture of a phenol reagent and a urease solution in the urease-indophenol method (analysis of blood urea nitrogen) Uchida,K.;K.Tejima
  25. L'Igiene Moderna v.62 On the behavior of anionic detergents in ozone-treated water Verde,L.;F.Meucci;G.C.Vanini
  26. Biological & Pharmaceutical Bulletin v.25 Contribution of nitric oxide to potassium bromate-induced elevation of methaemoglobin concentration in mouse blood Watanabe,S.;T.Shin-ichi;F.Tetsuya https://doi.org/10.1248/bpb.25.1315
  27. J. Chromatogr. A. v.804 New,sensitive and selective method for determining sub-microgram/l levels of bromate in drinking water Weinberg,H.S.;H.Yamada;R.J.Joyce https://doi.org/10.1016/S0021-9673(98)00152-6
  28. Environmental Health Perspectives v.87 Toxicity and Carcinogenicity of Potassium Bromate, -A New Renal Calcinogen Yuji,K. https://doi.org/10.2307/3431039