석탄회를 이용하는 탄소 격리용 생광물화 작용

Biomineralization Processes Using Fly Ash for Carbon Sequestration

  • Yul Roh (Environmental Sciences Division, Oak Ridge National Laboratory) ;
  • Moon, Ji-Won (Environmental Sciences Division, Oak Ridge National Laboratory) ;
  • Yungoo Song (Department of Earth System Sciences, Yonsei University) ;
  • Moon, Hi-Soo (Department of Earth System Sciences, Yonsei University)
  • 발행 : 2003.06.01

초록

본 연구는 금속이 다량 함유된 석탄회(metal-rich fly ash, MRFA)를 이용, 이산화탄소 및 금속의 격리를 위한 생지화학적 과정을 연구하고자 한다 이를 위해 다양한 이산화탄소 분압과 중탄산염 이온 농도의 조건 하에서 MRFA를 이용, 미생물에 의한 이산화탄소의 난용성 탄산염 광물로의 전환 실험을 실시하였다. 시험관부터 4-L의 배양용기까지의 다양한 규모의 실험을 통해, 금속환원 박테리아와 MRFA를 이용하는 경우, 효과적인 이산화탄소 및 금속의 격리가 이루어지는 것으로 나타났다. MRFA를 이용하는 침전 기작을 통한 이산화탄소 격리는 화석연료를 이용하는 발전소에서 방출되는 이산화탄소의 제거 및 석탄회 폐기물의 안정화의 보완적 방법으로 유용하다.

The objective of this study is to investigate biogeochemical processes to sequester $CO_2$and metals utilizing metal-rich fly ash (MRFA). Microbial conversion of $CO_2$into sparingly soluble carbonate minerals has been studied using MRFA under different $pCO_2$and different bicarbonate concentrations. Scaling from test tube to fermentation vessels (up to 4-L) using metal-reducing bacteria and MRFA has proved successful at sequestering carbon dioxide and metals. $CO_2$sequestration via precipitation processes using MRFA may complement the process of $CO_2$capture from fossil fuel plants while potentially stabilizing fly ash wastes.

키워드

참고문헌

  1. Bachu, S., Gunter, W.D., and Perkins, E.H. (1994) Aquifer disposal of $CO_2$: Hydrodynamic and mineral trapping. Energy Con. Manag. 35, 269-279.
  2. Cicerone, D. S., Stewart, A.J., and Roh, Y. (1999) Diel calcite production in an eutrophic spillcontrol basin. Environ. Toxicol. Chem. 18, 2169-2177.
  3. Fredrickson, J.K, Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., and Li, S. (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta, 62, 3239-3257.
  4. Herzog, H., Golomb, D., and Zemba, S. (1991) Fea sibility, modeling, and economics of sequestering power plant $CO_2$ emissions in the deep ocean. Environ. Prog., 10, 64-74.
  5. Kane, R.L. and Klein, D.E. (1997) United States strategy for mitigating global climate change. Energy Con. Manag., 38, S13-S18.
  6. Liu, S.V., Zhou, J, Zhang, C., Cole, D.R., Gajdarziska-Josifovska, M., and Phelps, T.J. (1997) Thermophilic Fe (III) reducing bacteria from the deep subsurface: The evolutionary implications. Science, 277, 1106-1109.
  7. Phelps, T.J., Raione, E.G., White, D.C., and Fliermans, C.B. (1989) Microbial activity in deep subsurface environments. Geomicrobiol. J., 7, 79-91.
  8. Riemer, P.W.F. and Ormerod, W.G. (1995) International perspectives and the results of carbon dioxide capture, disposal, and utilization studies. Energy Con. Manag. 36, 813-818.
  9. Roh, Y., Lauf, R. J., McMillan, A.D., Zhang, C., Rawn, C.J., Bai, J., and Phelps, T.J. (2001a) Microbial synthesis and the characterization of some metal-doped magnetite. Solid State Com., 118, 529-534.
  10. Roh, Y., McMillan, A.D., Lauf, R.J., and Phelps, T. J. (2001b) Utilization of biomineralization processes with fly ash for carbon sequestration. Proceeding of First National Conference on Carbon Sequestration. Washington, DC (http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/carbon_seq01.html).
  11. Roh, Y. and Moon, H.-S. (2000) Microbial synthesis of magnetite powder by iron reducing bacteria. J. Min. Soc. Korea, 13, 65-72.
  12. Roh, Y. and Moon, H.-S. (2001a) Microbial synthesis of cobalt-substituted magnetite nanoparticles by iron reducing bacteria. J. Min. Soc. Korea, 14, 111-118.
  13. Roh, Y. and Moon, H.-S. (2001b) Iron reduction by psychrotolerant bacteria isolated from ocean sediment. Geosciences J., 15, 183-190.
  14. Roh. Y., Moon. H.-S., and Song, Y. (2002) Metal reduction and mineral formation by Fe(III)-reducing bacteria isolated from extreme environment. J. Min. Soc. Korea, 15, 231-240.
  15. Roh, Y., Zhang, C.-L., Vali, H., Lauf, R.J., Zhou, J., and Phelps, T.J. (2003) Biogeochemical and environmental factors on iron biomineralization: magnetite and siderite formation. Clays Clay Miner., 51, 83-95.
  16. Stapleton, R.D. Jr., Sabree, Z.L., Palumbo, A.V., Moyer, C., Devol, A., Roh, Y., and Zhou, J.-Z. Metal reduction at in situ temperatures by Shewanella isolates from diverse marine environments. Aquatic Microbial Ecol. (in review).
  17. Thompson, J.B. and Ferris, F.G. (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995-998.
  18. Ye, Q, Y. Roh, Y., Blair, B., Zhou, J., Zhang, C., and, and Fields, M.W. (2003) Isolation and characterization of a novel, metal-reducing bacterium and the implications for alkaline chemotrophy. Appl. Environ. Microbiol. (in review).
  19. Zhang, C., Liu, S., Logan, J., Mazumder, R., and Phelps. T.J. (1996) Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium. Appl. Biochem. Biotechnol., 57/58, 923-932.
  20. Zhang, C., Liu, S., Phelps, T.J., Cole, D.R., Horita, J., Fortier, S.M., Elless, M., and Valley, J.W. (1997) Physiochemical, mineralogical and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron reducing bacteria. Geochim. Csomochim. Acta, 61, 4621-4632.
  21. Zhang, C., Vali, H., Romanek, C.S., Phelps, T.J., and Liu, S. (1998) Formation of single-domain magnetite by a thermophilic bacterium. Amer. Min., 83, 1409-1418.