Comparative Evaluation on Qualitative PCR using Different Extraction Methods for Nucleic Acids on Soybean and Corn Processed Foods

대두 및 옥수수 가공식품에서 유전자재조합체(GMO)의 정성 PCR분석을 위한 핵산 추출방법별 비교

  • Published : 2003.03.01

Abstract

Various kinds of genetically modified organisms (GMO) and processed foods have been developed during recent years. Genetically modified organisms can be classified into several groups as their development methods. Generally, GMO has three foreign DNA regions such as gene expression adjustment region(Promoter), termination region (terminator) and structure gene. Detection of these regions can be done particularly by polymerase chain reaction (PCR). PCR-based detection can virtually be performed for any GMO within short of time. The most important prerequisite for the application of PCR-based detection is to decide abstraction method of efficient nucleic acids. Specially, in the case of processed food, because nucleic acids of foodstuffs are damaged by heat treatment (sterilization), pressure and fermentation, DNA must be extracted ken the samples prior to PCR analysis. Although many DNA extraction protocols are available, they have rarely been compared in a comprehensive method. In this study low widely used commercial and non-commercial DNA extraction methods-DNeasy$^{TM}$, Wizard$^{TM}$, CTAB, phenol/chloroform system-were compared with respect to the quality and yield of nucleic acids and insertion genes.nes.

PCR법은 특정 유전자를 증폭하는 기술로 작물 및 식품에서 유전자 변형체 함유 여부를 가리는 효과적인 방법이다. 그러나 핵산의 추출법에 따라 PCR의 감도가 크게 달라지므로 정확한 추출법의 선정이 매우 중요하다. 본 연구는 현재 컬럼형 상용화 키트와 기존의 용매 추출방법을 이용하여 콩과 옥수수가공식품에 대한 각 유전자 부위의 검출감도를 비교 분석하였다. 핵산의 추출효율과 도입유전자의 증폭효율면 모두 상용화 키트인 Wizar$d^{TM}$, DNeasy$^{TM}$ 추출법이 우수하였다. DNeasy법은 대부분의 식품에서 우수한 추출효율을 보였으나, 옥수수가공식품에서 수율이 감소하는 단점을 나타내었다. Wizard법은 모든 가공식품에서 고른 추출효율을 보였으며, PCR반응에 의한 증폭산물도 잘 보존되어 가공식품의 GMO 검출에 적합한 것으로 나타났다. 한편 CTAB법은 콩가공식품에서 약간 효율이 좋은 것으로 나타났으나 대부분의 경우 효율이 낮았으며, 식품의 종류에 따라 편차가 심하게 나타났다. phenol/chloroform법은 대부분의 식품에서 핵산의 분리가 어려운 방법으로 나타나 GMO분석에는 적합하지 않은 방법으로 확인되었다.

Keywords

References

  1. 유전자 변형 농산물 표시 요령, 농림부 고시 제 2000-31호
  2. 유전자재조합식품등의 표시기준, 식품의약품안전청 고시 제 2001-43호
  3. Gachet, E., Martin, G.G., Vigneau, F. and Meyer, G.: Detection of genetically modified organisms (GMOs) by PCR: a brief review of methodologies available, Trends in Food Science & Technology, 9, 380-388 (1999) https://doi.org/10.1016/S0924-2244(99)00002-3
  4. Luthy, J.: Detection strategies for food authenticity and genetically modified foods, Food Control, 10, 359-361 (1999) https://doi.org/10.1016/S0956-7135(99)00075-4
  5. ILSI Europe Report Series, Method Development in Relation to Regulatory Requirements for the Detection of GMOs in the food chain, ILSI Europe, (2000)
  6. MacCormick, C.A., Griffin, H.G., Underwood, H.M. and Gasson, M.j.: Common DNA sequences with potential for detection of genetically manipulated organisms in food, Journal of Applied Microbiology, 84, 969-980 (1998) https://doi.org/10.1046/j.1365-2672.1998.00429.x
  7. Schreiber, G.A.: Challenges for methods to detect genetically modified DNA in foods, Food Control, 10, 351-352 (1999) https://doi.org/10.1016/S0956-7135(99)00073-0
  8. Meyer, R.: Development and application of DNA analytical methods for the detetction of GMOs in food, Food Control, 10, 391-399 (1999) https://doi.org/10.1016/S0956-7135(99)00081-X
  9. Hubner, P., Studer, E. & Luthy, J.: Quantitative competitive PCR for the detection of genetically modified organisms in food, Food Control, 10, 353-358 (1999) https://doi.org/10.1016/S0956-7135(99)00074-2
  10. Van Duijn,G., van Biert, R., Bleeker-Marcelis, H., Peppelman, H. & Hessing, M., Detection methods for genetically modified crops, Food Control, 10, 375-378 (1999) https://doi.org/10.1016/S0956-7135(99)00078-X
  11. Zimmermann, A., Lithy, J. and Pauli, U.: Quantitative and qualitative evaluation of nine different extration methods for nucleic acids on soya bean food samples, Z Lebensm Unters Forsch A, 207, 81-90 (1998) https://doi.org/10.1007/s002170050299
  12. Stave, J.W.: Detection of new of modified proteins in novel foods derived from GMO-future needs, Food Control, 10, 367-374 (1999) https://doi.org/10.1016/S0956-7135(99)00077-8
  13. Wurz, A., Bluth, A., Zeitz, P., Pfeifer, C. & Willmund, R.: Quantitative analysis of genetically modified organisms (GMO) in processed food by PCR-based methods, Food Control, 10, 385-389 (1999) https://doi.org/10.1016/S0956-7135(99)00080-8
  14. Deveolpment of Method to identify foods produced by means of genetic engineering DIMF-GEN 2000 DEC.15
  15. Ehlers, B., Strauch, E., Goltz, M., Wagner, H., Maidhof, H., Bendick, J., Apple, B. and Buhk, H. J.: Bundesgesundheitsblatt, 4, 118-211 (1997)
  16. Hardegger, M., Brodmann, P., Herman, A.: Quantitative detection of the 35S promotor and the NOS terminator using quantitative competitive PCR; Eur Food Res Technol, 209, 83-87 (1999) https://doi.org/10.1007/s002170050462
  17. Kim, H.J., Park, S.H. and Kim, H.Y.: Study for Detection of Glyphosate Tolerant Soybean Using PCR, Korean J. Food SCI. Technol., 33, 521-524 (2001)
  18. 藤波傳子, 山口敏和, 毛利光之, 된장 숙성 과정 중에 대두유래 DNA의 消長-재조합DNA검증-, 된장의 과학과 기술, 4(11), 399-402 (2000)
  19. Peter Westhoff; Molecular plant development from gene to plant (1998)