Abstract
The implementation of abnormal behavior detection IDS is more difficult than the implementation of misuse behavior detection IDS because usage patterns are various. Therefore, most of commercial IDS is misuse behavior detection IDS. However, misuse behavior detection IDS cannot detect system intrusion in case of modified intrusion patterns occurs. In this paper, we apply data mining so as to detect intrusion with only audit data related in intrusion among many audit data. The agent in the distributed IDS can collect log data as well as monitoring target system. False positive should be minimized in order to make detection accuracy high, that is, core of intrusion detection system. So We apply data mining algorithm for prediction of modified intrusion pattern in the level of audit data learning.
시스템에서 사용 패턴의 다양화 때문에 비정상 행위 탐지 IDS를 구현하는 것은 오용탐지 IDS를 구현하는 것보다 많은 어려움이 있다. 따라서 상용화되어 있는 대부분의 IDS는 오용 탐지 방법에 의한 것이다. 그러나 이러한 오용 탐지 방법에 의한 IDS는 변형된 침입 패턴이 발생할 경우 탐지해내 지 못한다는 단점을 가지고 있다. 본 논문에서는 감사데이터간의 침입 관계를 가지고 침입을 탐지하기 위해 데이터 마이닝 기법을 적용한다. 분산되어 있는 IDS에서의 에이전트는 시스템을 감시할뿐만 아니라 로그데이터까지 수집할 수 있다. 침입탐지시스템의 핵심인 탐지정확도를 높이기 위해 긍정적 결함이 최소화 되어야 한다. 따라서 감사데이터 학습단계에서 변형된 침입 패턴을 예측하기 위해서 데이터 마이닝 알고리즘을 적용한다.