m-Phenylene-Linked Bis-(Biradicals). Generation, Characterization and Computational Studies

  • Published : 2003.04.01

Abstract

m-Phenylene-linked biscarbenes, bisnitrenes and carbenonitrenes can be formed photochemically from appropriate nitrogenous precursors. Generation of such reactive intermediates under matrix-isolation conditions allows for their characterization by spectroscopic techniques such as ESR, UV /vis and IR. The latter method is also useful in characterizing secondary products derived from these reactive intermediates. Computational chemistry methods complement experimental IR data, aiding, thus, in identification of such compounds. In addition electronic structure calculations help in developing qualitative and semi-quantitative models, which can be useful in predicting ground-state multiplicities. The parent systems of m-phenylene-linked carbenes and nitrenes have high-spin ground states, but a switching to lower multiplicity can be achieved by chemical substitution. The ground state and various low-lying excited states of m-phenylenecarbenonitrenes can be reasonably approximated by simple valence-bond depictions. Finally, m-phenylenecarbenonitrenes are photoreactive in the inert matrix isomerizing to cyclopropene derivatives.

Keywords

References

  1. Adv. Phys. Org. Chem. v.26 Iwamura,H.
  2. Accs. Chem. Res. v.24 Dougherty,D.
  3. Acc. Chem. Res. v.26 Iwamura,H.;N.Koga
  4. Chem. Rev. v.94 Rajca,A.
  5. Angew. Chem. Int. Ed. Engl. v.33 Miller,J.S.;A.J.Epstein
  6. Chem. Eur. J. v.1 Yoshizawa,K.;R.Hoffmann
  7. Ultrashort Light Pulse Eisental,K.B.;Shapiro,S.(ed.)
  8. Application of Picosecond Spectroscopy to Chemistry Sitzman,E.V.;K.B.Eisental;O.Reidel
  9. Kinetics and Spectroscopy of Carbene and Biradicals Platz,M.S.;V.M.Maloney;Platz,M.S.(ed.)
  10. Chem. Lett. Sun,X.Z.;I.G.Virrels;M.W.George;H.Tomioka
  11. J. Am. Chem. Soc. v.121 Wang,Y.;T.Yuzawa;H.Hamaguchi;J.P.Toscano
  12. J. Am. Chem. Soc. v.122 Wang,Y.;J.P.Toscano
  13. Acc. Chem. Res. v.1 Trozzolo,A.M.
  14. Carbenes v.Ⅱ Trozzolo,A.M.;E.Wasserman;Moss.R.A.(ed.);Jones,M.,Jr.(ed.)
  15. Chem. Rev. v.93 Sander,W.;G.Bucher;S.Wierlacher
  16. Low Temperature Spectroscopy Mayer,B.
  17. Vibrational Spectroscopy of Trapped Species Hallam,H.E.
  18. Matrix Isolation Craddock,S.;A.J.Hinthclife
  19. Chem. Soc. Rev. v.9 Dunkin,I.R.
  20. Organic Photochemistry v.8 Sheridan,R.S.;Padwa,A.(ed.)
  21. Ab Initio Molecular Orbital Theory Hehre,W.J.;L.Radom;J.A.Pop;P.v.R.Schleyer
  22. Introduction to Computational Chemistry Jensen,F.
  23. Reviews in Computational Chemistry v.13 Bally,T.;W.T.Borden;Lipowitz,K.B.(ed.);D.B.Boyd(ed.)
  24. Carbene Chemistry(2$^{nd}$ ed.) Kirmes,W.
  25. Carbenes v.Ⅰ;Ⅱ Moss,R.A.;M.Jones,Jr.(ed.)
  26. Rearrangements in Ground and Excited States v.1 Jones,W.M.;de Mayo, P.(ed.)
  27. Reactive Molecules Wentrup,C.
  28. Azides and Nitrenes Wentrup,C.;Scriven,E.F.V.(ed.)
  29. Tetrahedron v.41 Gaspar,P.P.;J.P.Hsu;S.Chari,S.;M.Jones,Jr.
  30. Carbene (oide), Carbine v.E19b Houben-Weyl, Thieme, Stuttgart Regitz,M.(ed.)
  31. Advances in Carbene Chemistry v.1;2 Brinker,U.(ed.)
  32. Tetrahedron v.51 Zuev,P.S.;R.S.Sheridan
  33. Science v.231 Schaefer,H.F.
  34. J. Chem. Phys. v.89 Jensen,P.;R.P.Bunker
  35. Tetrahedron v.41 Shavitt,I.
  36. J. Chem. Phys. v.65 Engelking,P.C.;W.C.Lineberger
  37. J. Am. Chem. Soc. v.112 Hayes,J.C.;R.S.Sheridan
  38. J. Am. Chem. Soc. v.114 Travers,M.J.;D.C.Cowles;E.P.Clifford;G.B.Ellison
  39. J. Am. Chem. Soc. v.114 Kim,S.J.;T.P.Hamilton;H.F.Schaefer
  40. J. Am. Chem. Soc. v.114 Hrovat,D.A.;E.E.Waali;W.T.Borden
  41. J. Am. Chem. Soc. v.115 McDonald,R.N.;S.J.Davidson
  42. J. Comput. Chem. v.17 Castell,O.;V.M.Garcia;C.Bo;R.Caballol
  43. Acc. Chem. Res. v.23 Borden,W.T.;N.P.Gritsan;C.M.Hadad;W.L.Karney;C.R.Kemnitz;M.S.Platz
  44. Acc. Chem. Res. v.28 Platz,M.S.
  45. J. Am. Chem. Soc. v.118 Matzinger,S.;T.Bally;E.V.Patterson;R.J.McMahon
  46. J. Org. Chem. v.61 Wong,M.W.;C.Wentrup
  47. J. Org. Chem. v.61 Schreiner,P.R.;W.L.Karney;P.v.R.Schleyer;W.T.Borden;T.P.Hamilton;H.F.Schaefer,Ⅲ
  48. J. Am. Chem. Soc. v.119 Poutsma,J.C.;J.J.Nash;J.A.Paulino;R.R.Squires
  49. J. Org. Chem. v.65 Geise,C.M.;C.M.Hadad
  50. J. Am. Chem. Soc. v.119 Karney,W.L.;W.T.Borden
  51. J. Am. Chem. Soc. v.123 Gritsan.N.P.;I.Likhotvorik;M.L.Tsao;N.Flebi;M.S.Platz;W.L.Karney;C.R.Kemnitz;W.T.Borden
  52. J. Am. Chem. Soc. v.119 Karney,W.L.;W.T.Borden
  53. J. Am. Chem. Soc. v.120 Kemnitz,C.R.;W.L.Karney;W.T.Borden
  54. J. Am. Chem. Soc. v.123 Nicolaides,A.;T.Enyo;D.Miura;H.Tomioka
  55. J. Am. Chem. Soc. v.99 Borden,W.T.;E.R.Davidson
  56. J. Chem. Soc., Perkins Trans. v.2 no.5 Hrovat,D.A.;M.A.Murcko;P.M.Lahti;W.T.Borden
  57. J. Am. Chem. Soc. v.105 Wright,B.B.;M.S.Platz
  58. J. Am. Chem. Soc. v.119 Wenthold,P.G.;J.B.Kim;W.C.Lineberger
  59. Theor. Chem. Acta. v.47 Ovchinnikov,A.A.
  60. Proc. Cambridge Philos. Soc. v.36 Coulson,C.A.;G.S.Rushbrooke
  61. J. Am. Chem. Soc. v.101 Rule,M.;A.R.Matlin;E.F.Hilinski;D.A.Dougherty;J.A.Berson
  62. J. Chem. Soc. Perkin Trans v.2 Hrovat,D.A.;M.A.Murcko;P.M.Lahti;W.T.Borden
  63. J. Am. Chem. Soc. v.117 Fang,S.;L.Ming-Shi;D.A.Hrovat;W.T.Borden
  64. J. Am. Chem. Soc. v.115 Kanno,F.;K.Inoue;N.Koga;H.Iwamura
  65. Angew. Chem., Int. Ed. Engl. v.3 Dvolaitzky,M.;R.Chiarelli;A.Rassat
  66. J. Am. Chem. Soc. v.118 West,A.P.,Jr.;S.K.Silverman;D.A.Dougherty
  67. Chem. Phys. Lett. v.89 Itoh,K.
  68. J. Am. Chem. Soc. v.89 Wasserman,E.;R.W.Murray;W.A.Yager;A.M.Trozzolo;G.Smolinsky
  69. J. Chem. Soc., Chem. Comm. Tukada,H.;K.Mutai,K.;H.Iwamura
  70. J. Chem. Phys. v.83 Teki,Y.;T.Takui;H.Yagi,H.;K.Itoh;H.Iwamura
  71. J. Am. Chem. Soc. v.108 Teki,Y.;T.Takui;K.Itoh;H.Iwamura;K.Kobayashi
  72. J. Am. Chem. Soc. v.112 Fujita,I.;Y.Teki;T.Takui;T.Kinoshita;K.Itoh;F.Miko;Y.Sawaki;H.Iwamura
  73. J. Org. Chem. v.67 Enyo,T.;A.Nicolaides;H.Tomioka
  74. J. Am. Chem. Soc. v.120 Nicolaides,A.;H.Tomioka;S.Murata
  75. J. Org. Chem. v.59 Zuev,P.S.;R.S.Sheridan