DOI QR코드

DOI QR Code

신선찰벼와 찰흑미 전분의 이화학적 특성

Physicochemical Properties on Shinsun (Waxy) and Black Rice Starch

  • 최경철 (전라남도보건환경연구원 식품약품분석과) ;
  • 나환식 (전라남도보건환경연구원 식품약품분석과) ;
  • 오금순 (식품의약품안전청 잔류농약과) ;
  • 김성곤 (단국대학교 식품영양학과) ;
  • 김관 (전남대학교 식품공학과)
  • Choi, Gyeong-Cheol (Food & Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Na, Hwan-Sik (Food & Drug Analysis Division, Jeollanamdo Institute of Health and Environment) ;
  • Oh, Geum-Soon (Pesticide Residues Division, Korea Food & Drug Administration) ;
  • Kim, Sung-Kon (Dept. of Food Science and Nutrition, Dankook University) ;
  • Kim, Kwan (Dept. of Food Science and Technology, Chonnam National University)
  • 발행 : 2003.10.01

초록

흑미 (상해항혈나)와 신선찰벼 전분의 이화학적 성질을 조사한 결과 다음과 같은 결과를 얻었다. 신선찰벼와 흑미 전분의 일반성분은 시료간에 차이를 보이지 않았으며, 무기성분은 신선찰벼 전분의 경우 Ca, Mg, P, Na 순으로 함유하고 있었으며, 흑미 전분의 경우 Ca, P, Fe, Mg 순으로 나타났다. 입도분포는 두 시료 모두 1.15∼l.75$\mu\textrm{m}$의 작은 피크와 6.27∼6.97$\mu\textrm{m}$ 입자의 큰 피크를 보이는 이중 분포를 보여 두 품종 모두 거의 유사한 경향을 보였다. 전분의 요오드 반응에서 최대흡수파장과 λmax에서의 흡광도는 신선찰벼 전분이 각각 518 nm와 0.164, 흑미 전분이 521nm와 0.184로 흑미 전분이 다소 높았으며, 625nm에서의 흡광도 값은 신선찰벼 전분이 0.112, 흑미가 0.140으로 나타났다. 고유점도는 신선찰벼 전분이 178 mL/g, 흑미 전분이 183 mL/g으로 흑미 전분이 다소 높게 나타났으나, 물결합능력은 103.5%와 103.3%로 두 시료간에 차이를 보이지 않았다. 전분의 팽윤력과 용해도는 두 시료 모두 55∼6$0^{\circ}C$에서는 완만한 증가를 보이다가 6$0^{\circ}C$를 경계로 $65^{\circ}C$까지 급격히 증가하여 7$0^{\circ}C$이후에는 서서히 증가하는 경향을 보였다. 신선찰벼와 흑미 전분의 X-선 회절도는 전형적인 A형을 보였으며, 주사전자현미경에 의한 입자의 형태 관찰에서는 두 시료간에 차이 를 보이지 않았다.

This study examined physicochemical properties of two waxy rice starches, shinsun and black rice starches. Proximate compositions of both samples were similar. The major minerals in the shinsun rice starches were Ca, Mg, P and Na, whereas those in black rice starches were Ca, P, Fe and Mg. The major particle size of shinsun rice starch was 6.97 micron and that of black rice starch was 6.27 micron. In iodine reaction, maximum absorbance wavelength (λmax) and absorbance at 625nm of black rice starch were higher than those of shinsun rice starch. Intrinsic viscosity of black rice starch (183mL/g) was higher than that of shinsun rice starch (178 mL/g). Water binding capacity was similar in both samples. Swelling power and solubility of black rice starch were lower than those of shinsun rice starch. X-ray diffraction patterns of all samples showed traditional A type of cereals as shown peaks at 15.2 (15.0), 17.2 (17.15), 18.05 (17.95), 23.25 (23.15)$^{\circ}$. The common shape of SEM was observed in both waxy rice starches.

키워드

참고문헌

  1. Kim JS. 1997. Development of cooked food using speciality rice. Rural Home Economics 18: 5-8.
  2. Yoon JM, Hahn TR, Yoon HH. 1998. Effect of copigmentation on the stability of anthocyanins from a Korean pigmented rice variety. Kor J Food Sci Technol 30: 733-738.
  3. Cho MH, Paik YS, Yoon HH, Hahn TR. 1996. Chemical structure of the major color component from a Korean pigmented rice variety. Agric Chem Biotech 39: 304-307.
  4. Kim SS, Kim SY, Lee WJ. 1998. Characteristics of germinated colored rice as a potential raw material for Sikhe. Kor J Food Sci Technol 30: 1092-1096.
  5. Yamamoto K, Sawada S, Onogaki T. 1973. Properties of rice starch prepared by alkali method with various conditions. Denpun Kagaku 20: 99-104.
  6. Yoon HH, Paik YS, Kim JB, Hahn TR. 1995. Identification of anthocyanins from Korean pigmented rice. Kor J Agric Chem Soc 38: 581-583.
  7. AOAC. 1990. Official methods of analysis. 15th ed. The association of official analytical chemists, Washington, DC.
  8. KFDA. 2000. Food Code. Munyoung-sa, Seoul. p 3-29.
  9. Williams PC, Kuzina FD, Hylnka I. 1970. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem 47: 411-419.
  10. Medcalf DG, Gilles KA. 1965. Wheat starches. I. Comparison of physicochemical properties. Cereal Chem 42: 558-568.
  11. Corn Refiners Association. 1982. Standard analytical methods. Method B-61, The Association, Washington DC, USA.
  12. Schoch TJ. 1964. Swelling power and solubility of granules starches. In Methods in Carbohydrate Chemistry. Academic Press, New York. Vol IV, p 106-108.
  13. Dubois M, Gilles KA, Hamilton JK, Robers PA, Smith F. 1956. Calorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  14. Owusu-Ansah J, van de Voort FR, Stanley DW. 1982. Determination of starch gelatinization by X-ray diffractometry. Cereal Chem 59: 167-171.
  15. Song BH, Kim SK, Lee KH, Pyun YR, Lee SY. 1985. Viscometric properties of waxy rice starches. Kor J Food Sci Technol 17: 107-113.
  16. Kim HS, Kang OJ, Yoon KS. 1983. Physicochemical properties of waxy rice starches prepared from three different cultivars. Kor J Agric Chem Soc 26: 211-216.
  17. Oh GS. 2001. Properties of waxy black and glutinous rices and textures of cooked milled rice added waxy black and glutinous rices. PhD Dissertation. Chonnam National University, Gwangju.
  18. Ha TY, Park SH, Lee CH, Lee SH. 1999. Chemical composition of pigmented rice varieties. Kor J Food Sci Technol 31: 336-341.
  19. Kee HJ, Lee ST, Park YK. 2000. Preparation and quality characteristics of Korean wheat noddles made of brown glutinous rice flour with and without aroma. Kor J Food Sci Technol 32: 799-805.
  20. Cho SA, Kim SK. 2000. Particle size distribution, pasting pattern and texture of gel of acorn, mungbean and buckwheat starches. Kor J Food Sci Technol 32: 1291-1297.
  21. Harm J, Peter AM. 1997. Comparision of the brabender viscograph and the rapid visco analyzer. I. Statistical evaluationof the pasting profile. Starch 49: 89-92.
  22. Kim K, Lee YH, Kang KJ, Kim SK. 1993. Effect of steeping on physicochemical properties of waxy rice. Kor J Food Sci Technol 25: 535-540.
  23. Shin L, Chen LL, Cheng Y. 1997. Correlations between the fine structure, physicochemical properties and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chem 74: 34-39. https://doi.org/10.1094/CCHEM.1997.74.1.34
  24. Kim SK, Shin MS. 1992. Physicochemical properties of deffated nonwaxy and waxy rice starches. Kor J Food Sci Technol 24: 347-352.
  25. Cura JA, Krisman CR. 1990. Cereal grains; A study of their $\alpha$-1,4, $\alpha$-1,6 glucopolysaccharide composition. Starch 42:171-176. https://doi.org/10.1002/star.19900420503
  26. Leach HW. 1963. Determination of intrinsic viscosity of starches. Cereal Chem 40: 593-596.
  27. Kim SK, Son JW. 1990. Bran structure and some properties of waxy rice starches. Kor J Agric Chem Soc 33: 105-108.
  28. Lee SJ. 1991. Physicochemical properties of waxy brown rices. PhD Dissertation. Dankook University, Seoul.
  29. Kim KA, Jeon ER. 1996. Physicochemical properties and hydration of rice on various polishing degrees. Kor J Food Sci Technol 28: 959-964.
  30. Chandrashekar A, Kirleis AW. 1988. Influence of protein on starch gelatinization in sorghum. Cereal Chem 65: 457-462.
  31. Kim K, Choi GC, Kang KJ, Lee YH, Kim SK. 1992. Molecular structural properties of waxy rice starch. Kor J Food Sci Technol 24: 568-573.
  32. Wong RBK, Lelievre J. 1982. Comparison of crystallinities of wheat starches with different swelling capacities. Starch 34: 159-161. https://doi.org/10.1002/star.19820340504
  33. Baik SJ. 1999. Physicochemical and gelatinization properties of pigmented rice flour and starch. PhD Dissertation. Chungbuk National University, Cheongju.
  34. Song JY, Shin MS. 1998. Solubility patterns and gelatinization properties of waxy rice starches. Kor J Food Sci Technol 41: 516-521.

피인용 문헌

  1. Gelatinization Properties and Molecular Structure of Waxy Rice Starches Isolated from Korean Japonica and Indica Cultivars vol.30, pp.6, 2014, https://doi.org/10.9724/kfcs.2014.30.6.716
  2. Physicochemical and Structural Characteristics of Waxy Rice Flours and Starches during Soaking Time vol.26, pp.5, 2016, https://doi.org/10.17495/easdl.2016.10.26.5.457
  3. 찰흑미(상해항혈나) 전분의 열수가용성 및 불용성 물질 vol.34, pp.2, 2003, https://doi.org/10.3746/jkfn.2005.34.2.219