DOI QR코드

DOI QR Code

A Study on the Channel forming Discharge Estimation and the Hydraulic Geometry Characteristics of the Alluvial Stream

충적하천의 하도형성유량 산정과 수리기하특성에 관한 연구

  • 이희철 (현대엔지니어링(주) 토건·환경사업부 수자원부) ;
  • 이은태 (경희대학교 토목·건축공학부)
  • Published : 2003.10.01

Abstract

For many rivers and streams, it has been observed that a single representative discharge may be used to determine the hydraulic geometry of a stable channel. This representative channel forming discharge has been given several names by different researchers, including bankfull, specified recurrence interval, and effective discharge. Therefore, The purpose of this study is to estimate channel forming discharge for study areas using the hydrological characteristic parameters and recording data, and to determine the hydraulic geometry relationships for the relating bankfull dimensions to bankfull discharge. In the Munmak and Seomyun gauging stations, the estimated bankfull discharges are found to have a return period of 1.8 and 1.5 years on the maximum annual series, respectively. The estimated effective discharges at those stations are largely different from bankfull discharges. The hydraulic geometry relationships between bankfull discharge and bankfull width, bankfull depth, velocity, bed slope are established. But the statistical parameters, such as R2, are calculated lower.

많은 강과 하천에서 하나의 대표적인 유량이 안정하도 형태를 결정하는데 사용되어 질 수 있다. 이러한 대표적인 하도형성유량은 여러 연구자들의 접근 방식의 차이에 따라 강턱유량, 특정 재현기간유량, 유효유량 등으로 표시된다. 따라서 본 연구에서는 대상유역의 특성인자와 관측자료를 이용하여 하도형성유량을 산정하고, 강턱유량과 수리기하 특성간의 상관관계를 분석하였다. 문막과 서면 수위관측소에서 하도형성유량으로 결정된 강턱유량의 재현기간은 유출량 자료를 빈도분석한 결과, 문막은 1.8년, 서면은 1.5년으로 산정되었으며, 유효유량은 강턱유량에 비해 10배 이상 작게 산정되었다. 강턱유량과 수리기하특성과의 상관관계를 분석한 결과, 유역면적과 강턱유량은 어느 정도 상관성이 있으나 강턱유량과 수리기하간의 상관성은 낮은 것으로 분석되었다.

Keywords

References

  1. 강원도 (1986). 섬강 하천정비 기본계획 보고서
  2. 강원도(1990). 홍천강 하천정비 기본계획 보고서
  3. 건설부 (1990). 섬강 하상변동조사 보고서
  4. 건설교통부 (1994~1999). 한국수문조사년보
  5. 안상진, 이재경 (1987). '홍수터 통수능에 관한 연구.' 대한토목학회 논문집, 제7권, 제1호, pp. 121-129
  6. 우효섭 (2001). 하천수리학. 청문각, pp. 341-343
  7. 윤용남 (1999). 공업수문학. 청문각, pp. 420-494
  8. 한국건설기술연구원 (1989). 하천유사량 산정방법의 선정기준 개발. 연구보고서. 건기연 89-WR-113
  9. 한국건설기술연구원 (1990). 하천 유사량공식 선정기준 전산프로그램(ver 1.2), 우효섭, 유권규
  10. Andrews, E. D. (1980). 'Effective and bankfull discharge of streams in the Yampa basin, western Wyoming,' Journal of Hydrology, Elsevier, Vol. 46, pp. 311-330 https://doi.org/10.1016/0022-1694(80)90084-0
  11. Bray, D. I. (1982), 'Regime equations for gravel-bed rivers.' Gravel bed rivers, Edited by Hey, R. D., Bathurst, J. C. and Thome, C. R., Wiley, Chichester, pp. 517-542
  12. Hydrologic Engineering Center (2001). HEC-RAS, River Analysis System User's Mannual. U.S. Army Corps of Engineers, Davis, CA
  13. Inglis, C. C. (1947). 'Meanders and Their Bearing on River Training.' Proceedings of Institution of Civil Engineers, Maritime and Waterways Engineering Division Meeting London, England https://doi.org/10.1680/idivp.1947.13075
  14. Kellerhals, R. (1967). 'Stable channels with gravel-paved beds.' J. of the Waterways and Harbors Division, American Society of Civil Engineers, Vol. 93, pp. 63-84
  15. Knighton,D. (1998). Fluvial forms and Processes, A New Perspective. Arnold, London, England
  16. Leopold, L. B. (1994). A view of the river. Harvard University Press, Cambridge, pp. 134-135
  17. Leopold, I. B. and Maddock, T. (1953). The Hydraulic geometry of stream channels and some physiographic implications. USGS Professional Paper 252, USGS, Washington, D.C
  18. Pickup, G. and Warner, R. F. (1976). 'Effects of hydrologic regime on magnitude and frequency of dominant discharge.' Journal of Hydrology, Elsevier, Vol. 29, pp. 51-75 https://doi.org/10.1016/0022-1694(76)90005-6
  19. U.S. Army Corps of Engineers (2000). Channel-Forming Discharge. ERDC/CHL CHETN-VIII-5, pp. 2-6
  20. Williams, G. P. (1978). 'Bankfull Discharge of Rivers.' Water Resources Research, American Geophysical Union, Vol. 14, No. 6, pp. 1141-1154 https://doi.org/10.1029/WR014i006p01141
  21. Water Resources Research v.14 no.6 Bankfull Discharge of Rivers Williams,G.P. https://doi.org/10.1029/WR014i006p01141

Cited by

  1. Deriving Channel Width-discharge Relationship from Remote Sensing Imagery and Digital Elevation Models vol.48, pp.8, 2015, https://doi.org/10.3741/JKWRA.2015.48.8.685
  2. An Assessment of Flooding Risk Using Flash Flood Index in North Korea - Focus on Imjin Basin - vol.48, pp.12, 2015, https://doi.org/10.3741/JKWRA.2015.48.12.1037
  3. Development of a New Flood Index for Local Flood Severity Predictions vol.46, pp.1, 2013, https://doi.org/10.3741/JKWRA.2013.46.1.47
  4. Relationship between downstream hydraulic geometry and suspended sediment concentration characteristics vol.7, pp.4, 2013, https://doi.org/10.1016/j.jher.2013.03.002
  5. An analysis on geomorphic and hydraulic characteristics of dominant discharge in nam river vol.49, pp.2, 2016, https://doi.org/10.3741/JKWRA.2016.49.2.83
  6. Development of Desktop-Based LDC Evaluation System for Effectiveness TMDLs vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.067